Dynamic Resource Allocation for URLLC in UAV-Enabled Multi-access Edge Computing

Marcos Falcão, Caio Souza, Andson M. Balieiro, K. Dias
{"title":"Dynamic Resource Allocation for URLLC in UAV-Enabled Multi-access Edge Computing","authors":"Marcos Falcão, Caio Souza, Andson M. Balieiro, K. Dias","doi":"10.1109/EuCNC/6GSummit58263.2023.10188346","DOIUrl":null,"url":null,"abstract":"In the context of Ultra-reliable Low Latency communications (URLLC), the concepts of Multi-access Edge Computing (MEC), Network Function Virtualization (NFV), and Unmanned Aerial Vehicle (UAV) emerge as complementary paradigms that shall offer fine-grained on-demand distributed resources closer to the User Equipment (UE) and strong Line-of-Sight (LoS) paths between UAV and ground transmission nodes. However, compromise between onboard computation resource allocation and the URLLC requirements becomes challenging since UAVs are limited due to their size, weight, and power, and the virtualization adds extra overhead, which imposes a burden on the conventional Network Functions (NFs). This work proposes a NFV-MEC over UAV model based on Continuous-time Markov Chain (CTMC), with an embedded virtual resource scaling scheme for dynamic resource allocation (DRA). It also extensively analyzes the NFV-MEC architecture's virtualization layer, including node availability and power consumption, besides the URLLC conflicting reliability and latency metrics. The designed model allows analyzing how the main underlying virtualization parameters impact the critical services in a single NFV-MEC over a UAV node, assisting the network operator in proper node dimensioning and configuration.","PeriodicalId":65870,"journal":{"name":"公共管理高层论坛","volume":"11 1","pages":"293-298"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"公共管理高层论坛","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the context of Ultra-reliable Low Latency communications (URLLC), the concepts of Multi-access Edge Computing (MEC), Network Function Virtualization (NFV), and Unmanned Aerial Vehicle (UAV) emerge as complementary paradigms that shall offer fine-grained on-demand distributed resources closer to the User Equipment (UE) and strong Line-of-Sight (LoS) paths between UAV and ground transmission nodes. However, compromise between onboard computation resource allocation and the URLLC requirements becomes challenging since UAVs are limited due to their size, weight, and power, and the virtualization adds extra overhead, which imposes a burden on the conventional Network Functions (NFs). This work proposes a NFV-MEC over UAV model based on Continuous-time Markov Chain (CTMC), with an embedded virtual resource scaling scheme for dynamic resource allocation (DRA). It also extensively analyzes the NFV-MEC architecture's virtualization layer, including node availability and power consumption, besides the URLLC conflicting reliability and latency metrics. The designed model allows analyzing how the main underlying virtualization parameters impact the critical services in a single NFV-MEC over a UAV node, assisting the network operator in proper node dimensioning and configuration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无人机多接入边缘计算中URLLC动态资源分配
在超可靠低延迟通信(URLLC)的背景下,多接入边缘计算(MEC)、网络功能虚拟化(NFV)和无人机(UAV)的概念作为互补的范式出现,它们将提供更接近用户设备(UE)的细粒度按需分布式资源,以及无人机与地面传输节点之间的强视距(LoS)路径。然而,机载计算资源分配和URLLC要求之间的折衷变得具有挑战性,因为无人机由于其尺寸,重量和功率而受到限制,并且虚拟化增加了额外的开销,这给传统的网络功能(NFs)带来了负担。本文提出了一种基于连续时间马尔可夫链(CTMC)的无人机NFV-MEC模型,该模型嵌入了用于动态资源分配(DRA)的虚拟资源缩放方案。它还广泛分析了NFV-MEC架构的虚拟化层,包括节点可用性和功耗,以及URLLC冲突的可靠性和延迟指标。设计的模型允许分析主要底层虚拟化参数如何影响无人机节点上单个NFV-MEC的关键服务,帮助网络运营商进行适当的节点尺寸和配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
385
期刊最新文献
Undersampling and SNR Degradation in Practical Direct RF Sampling Systems Research Challenges in Trustworthy Artificial Intelligence and Computing for Health: The Case of the PRE-ACT project Inter-Satellite Link Prediction for Non-Terrestrial Networks Using Supervised Learning AI-Powered Edge Computing Evolution for Beyond 5G Communication Networks Phase Modulation-based Fronthaul Network for 5G mmWave FR-2 Signal Transmission over Hybrid Links
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1