Depth-based human activity recognition: A comparative perspective study on feature extraction

Heba Hamdy Ali , Hossam M. Moftah , Aliaa A.A. Youssif
{"title":"Depth-based human activity recognition: A comparative perspective study on feature extraction","authors":"Heba Hamdy Ali ,&nbsp;Hossam M. Moftah ,&nbsp;Aliaa A.A. Youssif","doi":"10.1016/j.fcij.2017.11.002","DOIUrl":null,"url":null,"abstract":"<div><p>Depth Maps-based Human Activity Recognition is the process of categorizing depth sequences with a particular activity. In this problem, some applications represent robust solutions in domains such as surveillance system, computer vision applications, and video retrieval systems. The task is challenging due to variations inside one class and distinguishes between activities of various classes and video recording settings. In this study, we introduce a detailed study of current advances in the depth maps-based image representations and feature extraction process. Moreover, we discuss the state of art datasets and subsequent classification procedure. Also, a comparative study of some of the more popular depth-map approaches has provided in greater detail. The proposed methods are evaluated on three depth-based datasets “MSR Action 3D”, “MSR Hand Gesture”, and “MSR Daily Activity 3D”. Experimental results achieved 100%, 95.83%, and 96.55% respectively. While combining depth and color features on “RGBD-HuDaAct” Dataset, achieved 89.1%.</p></div>","PeriodicalId":100561,"journal":{"name":"Future Computing and Informatics Journal","volume":"3 1","pages":"Pages 51-67"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.fcij.2017.11.002","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Computing and Informatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S231472881730051X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

Depth Maps-based Human Activity Recognition is the process of categorizing depth sequences with a particular activity. In this problem, some applications represent robust solutions in domains such as surveillance system, computer vision applications, and video retrieval systems. The task is challenging due to variations inside one class and distinguishes between activities of various classes and video recording settings. In this study, we introduce a detailed study of current advances in the depth maps-based image representations and feature extraction process. Moreover, we discuss the state of art datasets and subsequent classification procedure. Also, a comparative study of some of the more popular depth-map approaches has provided in greater detail. The proposed methods are evaluated on three depth-based datasets “MSR Action 3D”, “MSR Hand Gesture”, and “MSR Daily Activity 3D”. Experimental results achieved 100%, 95.83%, and 96.55% respectively. While combining depth and color features on “RGBD-HuDaAct” Dataset, achieved 89.1%.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度的人类活动识别:特征提取的比较视角研究
基于深度图的人类活动识别是对具有特定活动的深度序列进行分类的过程。在这个问题中,一些应用程序在诸如监视系统、计算机视觉应用程序和视频检索系统等领域中代表了健壮的解决方案。由于一个班级内部的变化,以及不同班级的活动和视频录制设置的区别,这项任务具有挑战性。在本研究中,我们详细介绍了目前基于深度图的图像表示和特征提取过程的研究进展。此外,我们还讨论了最新的数据集和随后的分类过程。此外,对一些更流行的深度图方法的比较研究提供了更详细的信息。在三个基于深度的数据集“MSR Action 3D”、“MSR Hand Gesture”和“MSR Daily Activity 3D”上对所提出的方法进行了评估。实验结果分别达到100%、95.83%和96.55%。在“RGBD-HuDaAct”数据集上结合深度和颜色特征,达到89.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Relationship between E-CRM, Service Quality, Customer Satisfaction, Trust, and Loyalty in banking Industry Enhancing query processing on stock market cloud-based database Crow search algorithm with time varying flight length Strategies for feature selection A Framework to Enhance the International Competitive Advantage of Information Technology Graduates A Literature Review on Agile Methodologies Quality, eXtreme Programming and SCRUM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1