Superconducting Quantum Critical Phenomena

Y. Tao
{"title":"Superconducting Quantum Critical Phenomena","authors":"Y. Tao","doi":"10.1142/S2424942418500093","DOIUrl":null,"url":null,"abstract":"When the superconducting transition temperature [Formula: see text] sufficiently approaches zero, quantum fluctuations are expected to be overwhelmingly amplified around zero temperature so that the mean-field approximation may break down. This implies that quantum critical phenomena may emerge in highly underdoped and overdoped regions, where the transition temperature [Formula: see text] is sufficiently low. By using Gor’kov’s Green function method, we propose a superconducting quantum critical equation (SQCE) for describing such critical phenomena. For two-dimensional (2D) overdoped materials, SQCE shows that the transition temperature [Formula: see text] and the zero-temperature superfluid phase stiffness [Formula: see text] will obey a two-class scaling combined by linear and parabolic parts, which agrees with the existing experimental investigation [I. Božović et al., Dependence of the critical temperature in overdoped copper oxides on superfluid density, Nature 536 (2016) 309–311]. For three-dimensional (3D) overdoped materials, SQCE predicts that the two-class scaling will be replaced by the linear scaling. Furthermore, we show that SQCE can be applied into highly underdoped region by using Anderson’s non-Fermi liquid model.","PeriodicalId":52944,"journal":{"name":"Reports in Advances of Physical Sciences","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports in Advances of Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2424942418500093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When the superconducting transition temperature [Formula: see text] sufficiently approaches zero, quantum fluctuations are expected to be overwhelmingly amplified around zero temperature so that the mean-field approximation may break down. This implies that quantum critical phenomena may emerge in highly underdoped and overdoped regions, where the transition temperature [Formula: see text] is sufficiently low. By using Gor’kov’s Green function method, we propose a superconducting quantum critical equation (SQCE) for describing such critical phenomena. For two-dimensional (2D) overdoped materials, SQCE shows that the transition temperature [Formula: see text] and the zero-temperature superfluid phase stiffness [Formula: see text] will obey a two-class scaling combined by linear and parabolic parts, which agrees with the existing experimental investigation [I. Božović et al., Dependence of the critical temperature in overdoped copper oxides on superfluid density, Nature 536 (2016) 309–311]. For three-dimensional (3D) overdoped materials, SQCE predicts that the two-class scaling will be replaced by the linear scaling. Furthermore, we show that SQCE can be applied into highly underdoped region by using Anderson’s non-Fermi liquid model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超导量子临界现象
当超导转变温度[公式:见原文]充分接近于零时,预计量子涨落将在零温度附近被压倒性地放大,从而使平均场近似可能失效。这意味着在高度欠掺杂和过掺杂的区域可能出现量子临界现象,其中转变温度[公式:见文本]足够低。利用Gor’kov’s Green函数方法,我们提出了超导量子临界方程(SQCE)来描述这种临界现象。对于二维(2D)过掺杂材料,SQCE表明转变温度[公式:见文]和零温度超流体相刚度[公式:见文]服从线性部分和抛物线部分组合的两级标度,这与已有的实验研究[1]一致。Božović et al.,过掺杂铜氧化物临界温度对超流体密度的依赖性,Nature 536(2016) 309-311。对于三维(3D)过掺杂材料,SQCE预测两级标度将被线性标度所取代。此外,我们还利用Anderson的非费米液体模型证明了SQCE可以应用于高欠掺杂区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
18
审稿时长
3 weeks
期刊最新文献
Formation of Major Types of Galaxies Based on the Energy Circulation Theory Many Worlds and the Vacuum Energy Problem On the Incompleteness of Birkhoff’s Theorem: A New Approach to the Central Symmetric Gravitational Field in Vacuum Space Replacement of Space-Time with Superfluid Space and Restoration of Newton’s Dynamic Ether Research Again Origin of the Asymmetry Between Matter and Antimatter — Energy Basic State Field of the Universe (∐)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1