{"title":"Separation Technology of Components of Waste Pharmaceutical Blisters","authors":"E. Miękoś, M. Zieliński, D. Sroczyński, A. Fenyk","doi":"10.2478/eces-2023-0034","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, the separation technology of components of waste pharmaceutical blisters and its adaptation to the industrial scale are described. It involved, among others, taking advantage of the phenomenon of difference in the density of the individual phases that were contained in the separation tank, i.e., the separating mixture, PVC plastics, and aluminium. As a result, the directions of movement of the separated blister components were opposite. All components of the separating mixture feature a similar surface tension (γ > 20 mN/m) which facilitates the penetration of the liquid between the blister component layers. After separation, the full-value products, i.e. polyvinyl chloride (PVC) and aluminium are obtained. The resulting products can be further processed and the entire technological process is a waste-free. PVC can be melted and processed into other products e.g. plastic components for the construction industry. Pure aluminium is a metal sought after and widely used in industry due to its low specific weight. An additional element supplementing the technology is the separation tank of our design in which the separation process of the blister components takes place. The advantage of the separation tank is that the separation process can be repeated many times with the same separating mixture until it is exhausted. Both separated blister components are directed to filtering followed by air drying without a mixing PVC plastic with aluminium.","PeriodicalId":11395,"journal":{"name":"Ecological Chemistry and Engineering S","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Chemistry and Engineering S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/eces-2023-0034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this paper, the separation technology of components of waste pharmaceutical blisters and its adaptation to the industrial scale are described. It involved, among others, taking advantage of the phenomenon of difference in the density of the individual phases that were contained in the separation tank, i.e., the separating mixture, PVC plastics, and aluminium. As a result, the directions of movement of the separated blister components were opposite. All components of the separating mixture feature a similar surface tension (γ > 20 mN/m) which facilitates the penetration of the liquid between the blister component layers. After separation, the full-value products, i.e. polyvinyl chloride (PVC) and aluminium are obtained. The resulting products can be further processed and the entire technological process is a waste-free. PVC can be melted and processed into other products e.g. plastic components for the construction industry. Pure aluminium is a metal sought after and widely used in industry due to its low specific weight. An additional element supplementing the technology is the separation tank of our design in which the separation process of the blister components takes place. The advantage of the separation tank is that the separation process can be repeated many times with the same separating mixture until it is exhausted. Both separated blister components are directed to filtering followed by air drying without a mixing PVC plastic with aluminium.