{"title":"Low Intensity (0.2T) Static Magnetic Field for Dispersing Nucleus AnkyrinG in Human Cultured Glioblastoma Cells","authors":"S. C. Kim, W. Im, Beom Jin Kim","doi":"10.4172/2155-9562.1000429","DOIUrl":null,"url":null,"abstract":"Biomagnetism is one of important biotechnology fields for manipulation of cell lines. However, its peri-cellular level regulation, upon stimulation is not fully developed. Glioblastoma U87 and U251 represent a malignant model in rapid growing cancer. We focused in cellular level dispersion of static magnetic fields (0.2T=2000 ± 600 Gauss), using its fast growing properties. As a result, cytoskeletal protein nuclear Ankyrin G was dispersed. Membrane barriers in TEM microscopy indicated the membranous apparatus change. Our findings bring an insight that static magnetic stimulation creates a specified cytoplasmic intracellular pattern","PeriodicalId":16455,"journal":{"name":"Journal of Neurology and Neurophysiology","volume":"9 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurology and Neurophysiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2155-9562.1000429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Biomagnetism is one of important biotechnology fields for manipulation of cell lines. However, its peri-cellular level regulation, upon stimulation is not fully developed. Glioblastoma U87 and U251 represent a malignant model in rapid growing cancer. We focused in cellular level dispersion of static magnetic fields (0.2T=2000 ± 600 Gauss), using its fast growing properties. As a result, cytoskeletal protein nuclear Ankyrin G was dispersed. Membrane barriers in TEM microscopy indicated the membranous apparatus change. Our findings bring an insight that static magnetic stimulation creates a specified cytoplasmic intracellular pattern