Sean M. Murphy, J. Hast, B. Augustine, D. Weisrock, J. D. Clark, David M. Kocka, C. W. Ryan, Jaime L. Sajecki, J. Cox
{"title":"Early genetic outcomes of American black bear reintroductions in the Central Appalachians, USA","authors":"Sean M. Murphy, J. Hast, B. Augustine, D. Weisrock, J. D. Clark, David M. Kocka, C. W. Ryan, Jaime L. Sajecki, J. Cox","doi":"10.2192/URSU-D-18-00011.1","DOIUrl":null,"url":null,"abstract":"Abstract: Habitat loss and overexploitation extirpated American black bears (Ursus americanus) from most of the Central Appalachians, USA, by the early 20th Century. To attempt to restore bears to the southwestern portion of this region, 2 reintroductions that used small founder groups (n = 27 and 55 bears), but different release methods (hard vs. soft), were conducted during the 1990s. We collected hair samples from black bears during 2004–2016 in the reintroduced Big South Fork (BSF) and Kentucky–Virginia populations (KVP), their respective Great Smoky Mountains (GSM) and Shenandoah National Park (SNP) source populations, and a neighboring population in southern West Virginia (SWV) to investigate the early genetic outcomes of bear reintroduction. Despite having undergone genetic bottlenecks, genetic diversity remained similar between reintroduced populations and their sources approximately 15 years after the founder events (ranges: AR = 4.86–5.61; HO = 0.67–0.75; HE = 0.65–0.71). Effective population sizes of the reintroduced KVP and BSF (NE = 31 and 36, respectively) were substantially smaller than their respective SNP and GSM sources (NE = 119 and 156, respectively), supporting founder effects. Genetic structure analysis indicated that the hard-released (i.e., no acclimation period) KVP founder group likely declined considerably, whereas the soft-released BSF founder group remained mostly intact, suggesting superior effectiveness of soft releases. Asymmetrical gene flow via immigration from the SWV has resulted in the KVP recovering from the initial founder group reduction. Sustained isolation, small NE, and small population size of the BSF may warrant continued genetic monitoring to determine if gene flow from neighboring populations is established or NE declines. For future bear reintroductions, we suggest managers consider sourcing founders from populations with high genetic diversity and soft-releasing bears to locales that are, if possible, within the dispersal capability of extant populations to mitigate the potential consequences of founder effects and isolation.","PeriodicalId":49393,"journal":{"name":"Ursus","volume":"36 1","pages":"119 - 133"},"PeriodicalIF":0.6000,"publicationDate":"2019-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ursus","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2192/URSU-D-18-00011.1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 6
Abstract
Abstract: Habitat loss and overexploitation extirpated American black bears (Ursus americanus) from most of the Central Appalachians, USA, by the early 20th Century. To attempt to restore bears to the southwestern portion of this region, 2 reintroductions that used small founder groups (n = 27 and 55 bears), but different release methods (hard vs. soft), were conducted during the 1990s. We collected hair samples from black bears during 2004–2016 in the reintroduced Big South Fork (BSF) and Kentucky–Virginia populations (KVP), their respective Great Smoky Mountains (GSM) and Shenandoah National Park (SNP) source populations, and a neighboring population in southern West Virginia (SWV) to investigate the early genetic outcomes of bear reintroduction. Despite having undergone genetic bottlenecks, genetic diversity remained similar between reintroduced populations and their sources approximately 15 years after the founder events (ranges: AR = 4.86–5.61; HO = 0.67–0.75; HE = 0.65–0.71). Effective population sizes of the reintroduced KVP and BSF (NE = 31 and 36, respectively) were substantially smaller than their respective SNP and GSM sources (NE = 119 and 156, respectively), supporting founder effects. Genetic structure analysis indicated that the hard-released (i.e., no acclimation period) KVP founder group likely declined considerably, whereas the soft-released BSF founder group remained mostly intact, suggesting superior effectiveness of soft releases. Asymmetrical gene flow via immigration from the SWV has resulted in the KVP recovering from the initial founder group reduction. Sustained isolation, small NE, and small population size of the BSF may warrant continued genetic monitoring to determine if gene flow from neighboring populations is established or NE declines. For future bear reintroductions, we suggest managers consider sourcing founders from populations with high genetic diversity and soft-releasing bears to locales that are, if possible, within the dispersal capability of extant populations to mitigate the potential consequences of founder effects and isolation.
期刊介绍:
Ursus includes a variety of articles on all aspects of bear management and research worldwide. Original manuscripts are welcome. In addition to manuscripts reporting original research, submissions may be based on thoughtful review and synthesis of previously-reported information, innovative philosophies and opinions, and public policy or legal aspects of wildlife conservation. Notes of general interest are also welcome. Invited manuscripts will be clearly identified, but will still be subject to peer review. All manuscripts must be in English. All manuscripts are peer-reviewed, and subject to rigorous editorial standards.