Damjan Bujak, Tonko Bogovac, D. Carevic, Hanna Miličević
{"title":"Filling Missing and Extending Significant Wave Height Measurements Using Neural Networks and an Integrated Surface Database","authors":"Damjan Bujak, Tonko Bogovac, D. Carevic, Hanna Miličević","doi":"10.3390/wind3020010","DOIUrl":null,"url":null,"abstract":"Wave data play a critical role in offshore structure design and coastal vulnerability studies. For various reasons, such as equipment malfunctions, wave data are often incomplete. Despite the interest in completing the data, few studies have considered constructing a machine learning model with publicly available wind measurements as input, while wind data from reanalysis models are commonly used. In this work, ANNs are constructed and tested to fill in missing wave data and extend the original wave measurements in a basin with limited fetch where wind waves dominate. Input features for the ANN are obtained from the publicly available Integrated Surface Database (ISD) maintained by NOAA. The accuracy of the ANNs is also compared to a state-of-the-art reanalysis wave model, MEDSEA, maintained at Copernicus Marine Service. The results of this study show that ANNs can accurately fill in missing wave data and also extend beyond the measurement period, using the wind velocity magnitude and wind direction from nearby weather stations. The MEDSEA reanalysis data showed greater scatter compared to the reconstructed significant wave heights from ANN. Specifically, MEDSEA showed a 22% higher HH index for expanding wave data and a 33% higher HH index for filling in missing wave data points.","PeriodicalId":51210,"journal":{"name":"Wind and Structures","volume":"44 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/wind3020010","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Wave data play a critical role in offshore structure design and coastal vulnerability studies. For various reasons, such as equipment malfunctions, wave data are often incomplete. Despite the interest in completing the data, few studies have considered constructing a machine learning model with publicly available wind measurements as input, while wind data from reanalysis models are commonly used. In this work, ANNs are constructed and tested to fill in missing wave data and extend the original wave measurements in a basin with limited fetch where wind waves dominate. Input features for the ANN are obtained from the publicly available Integrated Surface Database (ISD) maintained by NOAA. The accuracy of the ANNs is also compared to a state-of-the-art reanalysis wave model, MEDSEA, maintained at Copernicus Marine Service. The results of this study show that ANNs can accurately fill in missing wave data and also extend beyond the measurement period, using the wind velocity magnitude and wind direction from nearby weather stations. The MEDSEA reanalysis data showed greater scatter compared to the reconstructed significant wave heights from ANN. Specifically, MEDSEA showed a 22% higher HH index for expanding wave data and a 33% higher HH index for filling in missing wave data points.
期刊介绍:
The WIND AND STRUCTURES, An International Journal, aims at: - Major publication channel for research in the general area of wind and structural engineering, - Wider distribution at more affordable subscription rates; - Faster reviewing and publication for manuscripts submitted.
The main theme of the Journal is the wind effects on structures. Areas covered by the journal include:
Wind loads and structural response,
Bluff-body aerodynamics,
Computational method,
Wind tunnel modeling,
Local wind environment,
Codes and regulations,
Wind effects on large scale structures.