Toshiya Hamasaki, K. Yagyu, H. Mitani, T. Nishida, H. Tochihara, Takayuki Suzuki
{"title":"Hydrogen etching of the SiC(0001) surface at moderate temperature","authors":"Toshiya Hamasaki, K. Yagyu, H. Mitani, T. Nishida, H. Tochihara, Takayuki Suzuki","doi":"10.1116/6.0001147","DOIUrl":null,"url":null,"abstract":"Hydrogen etching of a 4H-SiC(0001) surface at a moderate temperature of 1200 °C with molecular hydrogen gas was investigated to obtain enough flat and clean surface for large-scale high-quality epitaxial graphene synthesis. We found after a prolonged hydrogen etching that micro scratches, large depressions, and contaminations produced on the wafer in the manufacturing process disappeared and that a periodic array of atomic steps appeared, maintaining initial flat surface morphology. One hour of etching with a flow of 1.0 l/min was the optimum condition to obtain a flat and clean SiC surface in the present study. Using such surfaces, we were able to synthesize the so-called zero layer graphene by thermal annealing in ultrahigh vacuum.","PeriodicalId":17652,"journal":{"name":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","volume":"15 1","pages":"052801"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0001147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Hydrogen etching of a 4H-SiC(0001) surface at a moderate temperature of 1200 °C with molecular hydrogen gas was investigated to obtain enough flat and clean surface for large-scale high-quality epitaxial graphene synthesis. We found after a prolonged hydrogen etching that micro scratches, large depressions, and contaminations produced on the wafer in the manufacturing process disappeared and that a periodic array of atomic steps appeared, maintaining initial flat surface morphology. One hour of etching with a flow of 1.0 l/min was the optimum condition to obtain a flat and clean SiC surface in the present study. Using such surfaces, we were able to synthesize the so-called zero layer graphene by thermal annealing in ultrahigh vacuum.