Selection of universal features for image classification

Pedro A. Rodriguez, Nathan G. Drenkow, D. DeMenthon, Zachary H. Koterba, Kathleen Kauffman, Duane C. Cornish, Bart Paulhamus, R. J. Vogelstein
{"title":"Selection of universal features for image classification","authors":"Pedro A. Rodriguez, Nathan G. Drenkow, D. DeMenthon, Zachary H. Koterba, Kathleen Kauffman, Duane C. Cornish, Bart Paulhamus, R. J. Vogelstein","doi":"10.1109/WACV.2014.6836078","DOIUrl":null,"url":null,"abstract":"Neuromimetic algorithms, such as the HMAX algorithm, have been very successful in image classification tasks. However, current implementations of these algorithms do not scale well to large datasets. Often, target-specific features or patches are “learned” ahead of time and then correlated with test images during feature extraction. In this paper, we develop a novel method for selecting a single set of universal features that enables classification across a broad range of image classes. Our method trains multiple Random Forest classifiers using a large dictionary of features and then combines them using a majority voting scheme. This enables the selection of the most discriminative patches based on feature importance measures. Experiments demonstrate the viability of this method using HMAX features as well as the tradeoff between the number of universal features, classification performance, and processing time.","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"12 1","pages":"355-362"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2014.6836078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Neuromimetic algorithms, such as the HMAX algorithm, have been very successful in image classification tasks. However, current implementations of these algorithms do not scale well to large datasets. Often, target-specific features or patches are “learned” ahead of time and then correlated with test images during feature extraction. In this paper, we develop a novel method for selecting a single set of universal features that enables classification across a broad range of image classes. Our method trains multiple Random Forest classifiers using a large dictionary of features and then combines them using a majority voting scheme. This enables the selection of the most discriminative patches based on feature importance measures. Experiments demonstrate the viability of this method using HMAX features as well as the tradeoff between the number of universal features, classification performance, and processing time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于图像分类的通用特征选择
神经模拟算法,如HMAX算法,在图像分类任务中已经非常成功。然而,目前这些算法的实现不能很好地扩展到大型数据集。通常,目标特定的特征或补丁是提前“学习”的,然后在特征提取期间与测试图像相关联。在本文中,我们开发了一种新的方法来选择一组通用特征,使分类能够跨越广泛的图像类别。我们的方法使用一个大的特征字典来训练多个随机森林分类器,然后使用多数投票方案将它们组合起来。这使得基于特征重要性度量选择最具鉴别性的补丁成为可能。实验证明了该方法使用HMAX特征以及通用特征数量、分类性能和处理时间之间的权衡的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ordinal Classification with Distance Regularization for Robust Brain Age Prediction. Brainomaly: Unsupervised Neurologic Disease Detection Utilizing Unannotated T1-weighted Brain MR Images. PathLDM: Text conditioned Latent Diffusion Model for Histopathology. Domain Generalization with Correlated Style Uncertainty. Semantic-aware Video Representation for Few-shot Action Recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1