{"title":"New method for detecting and removing random-valued impulse noise from images","authors":"P. Lyakhov, A. Orazaev","doi":"10.18287/2412-6179-co-1145","DOIUrl":null,"url":null,"abstract":"The paper proposes a method for detecting and removing impulse noise in images, which determines the similarity between pixels by distance and the difference in brightness values in the local detector window. An impulse noise model is considered, where distorted pixels take random values and also randomly appear in the image. Pixels identified as pulses are recovered with an adaptive median filter. The impulses are determined in the detector window, whose size is calculated in the Euclidean metric and increases with increasing noise intensity in the image. In the experimental part, we discuss visual differences between familiar methods and the one proposed herein on three images for three different impulse noise intensities. In the approximation of image fragments, it is seen that the proposed method copes with the task in the best way, which is also confirmed by numerical estimates of the quality of image reconstruction from impulse noise based on the peak signal-to-noise ratio and the structural similarity index. The proposed method can be used when solving problems of cleaning images under conditions of distorting impulses and for eliminating distortions caused by adverse weather effects, such as raindrops and snow.","PeriodicalId":46692,"journal":{"name":"Computer Optics","volume":"12 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2412-6179-co-1145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The paper proposes a method for detecting and removing impulse noise in images, which determines the similarity between pixels by distance and the difference in brightness values in the local detector window. An impulse noise model is considered, where distorted pixels take random values and also randomly appear in the image. Pixels identified as pulses are recovered with an adaptive median filter. The impulses are determined in the detector window, whose size is calculated in the Euclidean metric and increases with increasing noise intensity in the image. In the experimental part, we discuss visual differences between familiar methods and the one proposed herein on three images for three different impulse noise intensities. In the approximation of image fragments, it is seen that the proposed method copes with the task in the best way, which is also confirmed by numerical estimates of the quality of image reconstruction from impulse noise based on the peak signal-to-noise ratio and the structural similarity index. The proposed method can be used when solving problems of cleaning images under conditions of distorting impulses and for eliminating distortions caused by adverse weather effects, such as raindrops and snow.
期刊介绍:
The journal is intended for researchers and specialists active in the following research areas: Diffractive Optics; Information Optical Technology; Nanophotonics and Optics of Nanostructures; Image Analysis & Understanding; Information Coding & Security; Earth Remote Sensing Technologies; Hyperspectral Data Analysis; Numerical Methods for Optics and Image Processing; Intelligent Video Analysis. The journal "Computer Optics" has been published since 1987. Published 6 issues per year.