Yigang Wang, Wenli Zhang, Sihui Wang, Wei Wei, Jian Fang, B. Zhu, Yong Wang
{"title":"Influence of primary electron incident angle and electron bombardment on the secondary electron yield of laser-treated copper","authors":"Yigang Wang, Wenli Zhang, Sihui Wang, Wei Wei, Jian Fang, B. Zhu, Yong Wang","doi":"10.1116/6.0000952","DOIUrl":null,"url":null,"abstract":"Electron cloud is a persistent problem in operating modern accelerators. It might be eliminated by reducing the secondary electron yield (SEY), which is a property of the material of vacuum chambers. In the present study, the SEYs of oxygen-free copper samples are dramatically mitigated by grooving their surfaces with a laser-etching technique. Such mitigation is realized by trapping incident primary electrons and their induced secondary electrons in the grooves. The SEYs of the laser-etched samples are dependent on the geometrical characteristics of the grooves and the incident angles of the primary electrons, i.e., reducing the incident angle can lead to a reduction in the SEY. Electron bombardment of the grooved surface with an electron dose of 2 × 10−2 C mm−2 will further reduce its maximum SEY from 1.15 to 0.98, which might be attributed to the formation of Cu2O and graphite-like C—C bonds and the removal of surface contaminants.","PeriodicalId":17652,"journal":{"name":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","volume":"43 1","pages":"034201"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0000952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Electron cloud is a persistent problem in operating modern accelerators. It might be eliminated by reducing the secondary electron yield (SEY), which is a property of the material of vacuum chambers. In the present study, the SEYs of oxygen-free copper samples are dramatically mitigated by grooving their surfaces with a laser-etching technique. Such mitigation is realized by trapping incident primary electrons and their induced secondary electrons in the grooves. The SEYs of the laser-etched samples are dependent on the geometrical characteristics of the grooves and the incident angles of the primary electrons, i.e., reducing the incident angle can lead to a reduction in the SEY. Electron bombardment of the grooved surface with an electron dose of 2 × 10−2 C mm−2 will further reduce its maximum SEY from 1.15 to 0.98, which might be attributed to the formation of Cu2O and graphite-like C—C bonds and the removal of surface contaminants.