Sol-gel synthesis and characterization of neodymium orthoferrite for disposing oily wastewater

N. Phan, N. Chu
{"title":"Sol-gel synthesis and characterization of neodymium orthoferrite for disposing oily wastewater","authors":"N. Phan, N. Chu","doi":"10.51316/jca.2023.027","DOIUrl":null,"url":null,"abstract":"The aim of this study was to design and characterize a NdFeO3-based photocatalyst prepared by sol-gel method for treatment of oily wastewater. Different characterization techniques such as X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), UV–vis spectrophometer were used to elucidate the structure, morphology, surface functional groups, and optical absorption properties of the prepared NdFeO3 photocatalyst. The photo-Fenton degradation performance of the as-prepared NdFeO3 photocatalyst was investigated by degrading oily-containing wastewater under visible light irradiation. The NdFeO3 photocatalyst manifests the high chemical oxygen demand (COD) removal efficiency of 97.6 % for 120 min reaction) thanks to its narrow band gap energy and high crystalline degree.","PeriodicalId":23507,"journal":{"name":"Vietnam Journal of Catalysis and Adsorption","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Catalysis and Adsorption","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51316/jca.2023.027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this study was to design and characterize a NdFeO3-based photocatalyst prepared by sol-gel method for treatment of oily wastewater. Different characterization techniques such as X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), UV–vis spectrophometer were used to elucidate the structure, morphology, surface functional groups, and optical absorption properties of the prepared NdFeO3 photocatalyst. The photo-Fenton degradation performance of the as-prepared NdFeO3 photocatalyst was investigated by degrading oily-containing wastewater under visible light irradiation. The NdFeO3 photocatalyst manifests the high chemical oxygen demand (COD) removal efficiency of 97.6 % for 120 min reaction) thanks to its narrow band gap energy and high crystalline degree.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
处理含油废水用正铁氧体钕的溶胶-凝胶合成及表征
本研究的目的是设计并表征溶胶-凝胶法制备的用于含油废水处理的ndfeo3基光催化剂。采用x射线衍射(XRD)、扫描电镜(SEM)、傅里叶变换红外光谱(FTIR)、紫外-可见分光光度计等表征技术对制备的NdFeO3光催化剂的结构、形貌、表面官能团和光学吸收性能进行了表征。通过可见光照射下对含油废水的降解,考察了制备的NdFeO3光催化剂的光- fenton降解性能。NdFeO3光催化剂具有窄带隙能和高结晶度,在120 min的反应时间内COD去除率达到97.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preparation of graphene from polyethylene terephthalate (PET) bottle wastes and its use for the removal of Methylene blue from aqueous solution Synthesis and application of biochar from agricultural by-products. Effect of pyrolysis temperature on the acid-base properties of biochar Synthesized MgFe2O4 nanoparticles to remove Pb2+ from aqueous solution Fabrication of activated carbon from polyethylene terephthalate plastic waste (PET) and their application for the removal of organic dyes in aqueous solution by chemical method A novel adsorbent based electroplating sludge – rice husk char for removal of methylene blue and ciprofloxacin in aqueous solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1