{"title":"Advances in SATCOM phased arrays using silicon technologies","authors":"Gabriel M. Rebeiz, L. Paulsen","doi":"10.1109/MWSYM.2017.8059022","DOIUrl":null,"url":null,"abstract":"This paper presents several phased-array efforts at X and Ku-band based on highly integrated silicon core chips. The work shows that it is possible to build advanced phased-arrays using SiGe chips coupled with GaAs LNAs at each antenna element for low noise operation and high G/T, or GaAs PAs for higher radiated power per element (if needed). The phased-array is constructed on a single printed-circuit board which reduces the cost by a factor of 10x. This will revolutionize X, Ku and Ka-band phased arrays by making them the preferred choice for airborne and mobile platforms due to their reduced height, weight and drag.","PeriodicalId":6481,"journal":{"name":"2017 IEEE MTT-S International Microwave Symposium (IMS)","volume":"4 1","pages":"1877-1879"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE MTT-S International Microwave Symposium (IMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2017.8059022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
This paper presents several phased-array efforts at X and Ku-band based on highly integrated silicon core chips. The work shows that it is possible to build advanced phased-arrays using SiGe chips coupled with GaAs LNAs at each antenna element for low noise operation and high G/T, or GaAs PAs for higher radiated power per element (if needed). The phased-array is constructed on a single printed-circuit board which reduces the cost by a factor of 10x. This will revolutionize X, Ku and Ka-band phased arrays by making them the preferred choice for airborne and mobile platforms due to their reduced height, weight and drag.