Berke Demiralp, H. S. Pisheh, Berk Kucukoglu, Utku Hatipoglu, M. Hanay
{"title":"Monitoring Micromechanical Buckling at High-Speed for Sensing and Transducer Applications","authors":"Berke Demiralp, H. S. Pisheh, Berk Kucukoglu, Utku Hatipoglu, M. Hanay","doi":"10.1109/Transducers50396.2021.9495591","DOIUrl":null,"url":null,"abstract":"Controlling the amount and direction of buckling at micro- and nano-scale efficiently opens up avenues for novel actuation and sensor applications. Earlier platforms that can achieve a full and non-thermal control of microscopic buckling operated only with a time resolution of 40 ms. Here, we have measured the buckling amount of a beam starting from unbuckled position and reaching to large post-buckling deformations by collecting secondary electrons under scanning electron microscope. Line mode is used for ultrafast measurements with 33kHz scan frequency, and a displacement noise floor of 40pm/√Hz was obtained. Moreover, by further reduction in the device dimensions, the buckling threshold voltage was reduced by a factor of three compared to similar platforms.","PeriodicalId":6814,"journal":{"name":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","volume":"12 1","pages":"627-630"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Transducers50396.2021.9495591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Controlling the amount and direction of buckling at micro- and nano-scale efficiently opens up avenues for novel actuation and sensor applications. Earlier platforms that can achieve a full and non-thermal control of microscopic buckling operated only with a time resolution of 40 ms. Here, we have measured the buckling amount of a beam starting from unbuckled position and reaching to large post-buckling deformations by collecting secondary electrons under scanning electron microscope. Line mode is used for ultrafast measurements with 33kHz scan frequency, and a displacement noise floor of 40pm/√Hz was obtained. Moreover, by further reduction in the device dimensions, the buckling threshold voltage was reduced by a factor of three compared to similar platforms.