Enhanced tolerance-based intuitionistic fuzzy rough set theory feature selection and ResNet-18 feature extraction model for arrhythmia classification

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS Multiagent and Grid Systems Pub Date : 2023-02-03 DOI:10.3233/mgs-220317
M. Rajeshwari, K. Kavitha
{"title":"Enhanced tolerance-based intuitionistic fuzzy rough set theory feature selection and ResNet-18 feature extraction model for arrhythmia classification","authors":"M. Rajeshwari, K. Kavitha","doi":"10.3233/mgs-220317","DOIUrl":null,"url":null,"abstract":"Arrhythmia classification on Electrocardiogram (ECG) signals is an important process for the diagnosis of cardiac disease and arrhythmia disease. The existing researches in arrhythmia classification have limitations of imbalance data problem and overfitting in classification. This research applies Fuzzy C-Means (FCM) – Enhanced Tolerance-based Intuitionistic Fuzzy Rough Set Theory (ETIFRST) for feature selection in arrhythmia classification. The selected features from FCM-ETIFRST were applied to the Multi-class Support Vector Machine (MSVM) for arrhythmia classification. The ResNet18 – Convolution Neural Network (CNN) was applied for feature extraction in input signal to overcome imbalance data problem. Conventional feature extraction along with CNN features are applied for FCM-ETIFRST feature selection process. The FCM-ETIFRST method in arrhythmia classification is evaluated on MIT-BIH and CPCS 2018 dataset. The FCM-ETIFRST has 98.95% accuracy and Focal loss-CNN has 98.66% accuracy on MIT-BIH dataset. The FCM-ETIFRST method has 98.45% accuracy and Explainable Deep learning Model (XDM) method have 93.6% accuracy on CPCS 2018 dataset.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiagent and Grid Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/mgs-220317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Arrhythmia classification on Electrocardiogram (ECG) signals is an important process for the diagnosis of cardiac disease and arrhythmia disease. The existing researches in arrhythmia classification have limitations of imbalance data problem and overfitting in classification. This research applies Fuzzy C-Means (FCM) – Enhanced Tolerance-based Intuitionistic Fuzzy Rough Set Theory (ETIFRST) for feature selection in arrhythmia classification. The selected features from FCM-ETIFRST were applied to the Multi-class Support Vector Machine (MSVM) for arrhythmia classification. The ResNet18 – Convolution Neural Network (CNN) was applied for feature extraction in input signal to overcome imbalance data problem. Conventional feature extraction along with CNN features are applied for FCM-ETIFRST feature selection process. The FCM-ETIFRST method in arrhythmia classification is evaluated on MIT-BIH and CPCS 2018 dataset. The FCM-ETIFRST has 98.95% accuracy and Focal loss-CNN has 98.66% accuracy on MIT-BIH dataset. The FCM-ETIFRST method has 98.45% accuracy and Explainable Deep learning Model (XDM) method have 93.6% accuracy on CPCS 2018 dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于耐受性的直觉模糊粗糙集理论特征选择与ResNet-18特征提取模型在心律失常分类中的应用
根据心电图信号对心律失常进行分类是心脏病和心律失常疾病诊断的重要过程。现有的心律失常分类研究存在数据不平衡、分类过拟合等问题。本研究将模糊c均值(FCM) -基于增强容忍度的直觉模糊粗糙集理论(ETIFRST)用于心律失常分类的特征选择。从FCM-ETIFRST中选择的特征应用于多类支持向量机(MSVM)进行心律失常分类。采用ResNet18 -卷积神经网络(CNN)对输入信号进行特征提取,克服数据不平衡问题。在FCM-ETIFRST特征选择过程中,采用了传统的特征提取和CNN特征。在MIT-BIH和CPCS 2018数据集上对FCM-ETIFRST方法在心律失常分类中的应用进行了评估。FCM-ETIFRST在MIT-BIH数据集上的准确率为98.95%,Focal loss-CNN的准确率为98.66%。FCM-ETIFRST方法在CPCS 2018数据集上的准确率为98.45%,可解释深度学习模型(XDM)方法的准确率为93.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Multiagent and Grid Systems
Multiagent and Grid Systems COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
1.50
自引率
0.00%
发文量
13
期刊最新文献
Blockchain applications for Internet of Things (IoT): A review Sine tangent search algorithm enabled LeNet for cotton crop classification using satellite image Optimization enabled elastic scaling in cloud based on predicted load for resource management Geese jellyfish search optimization trained deep learning for multiclass plant disease detection using leaf images Adam Adadelta Optimization based bidirectional encoder representations from transformers model for fake news detection on social media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1