Application of Machine Learning to Oil Production Forecast under Uncertainties-The Linear Model

L. Kubota, F. Souto
{"title":"Application of Machine Learning to Oil Production Forecast under Uncertainties-The Linear Model","authors":"L. Kubota, F. Souto","doi":"10.4043/29883-ms","DOIUrl":null,"url":null,"abstract":"\n In this paper, we propose an alternative approach to the problem of oil-production forecast based on the most straightforward feature-based machine-learning algorithm: the linear model. The method can be successfully applied to forecast both oil-rate and liquid-rate in oil fields under (i) water injection, (ii) gas injection, and (iii) simultaneous water and steam injection. Our data-driven algorithm learns the underlying reservoir dynamics from 3 sets of time-series, namely, (i) injection-rate, (ii) liquid and oil-rate, and (iii) number of producers. That is all the data we need to make reliable forecasts, no geological model or numerical reservoir simulators were used.","PeriodicalId":10927,"journal":{"name":"Day 3 Thu, October 31, 2019","volume":"124 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, October 31, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/29883-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we propose an alternative approach to the problem of oil-production forecast based on the most straightforward feature-based machine-learning algorithm: the linear model. The method can be successfully applied to forecast both oil-rate and liquid-rate in oil fields under (i) water injection, (ii) gas injection, and (iii) simultaneous water and steam injection. Our data-driven algorithm learns the underlying reservoir dynamics from 3 sets of time-series, namely, (i) injection-rate, (ii) liquid and oil-rate, and (iii) number of producers. That is all the data we need to make reliable forecasts, no geological model or numerical reservoir simulators were used.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习在不确定条件下石油产量预测中的应用——线性模型
在本文中,我们提出了一种替代方法来解决石油产量预测问题,该方法基于最直接的基于特征的机器学习算法:线性模型。该方法可以成功地应用于(1)注水、(2)注气、(3)同时注水和注汽三种情况下的油田产油率和液率预测。我们的数据驱动算法从3组时间序列中学习底层储层动态,即(i)注入速率,(ii)液油速率,以及(iii)生产商数量。这就是我们进行可靠预测所需的全部数据,没有使用地质模型或数值油藏模拟器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Partnerships & Joint Ventures in Brazilian Oil and Gas Markets Remediation of Hydrate Plug in Gas Export Line – A West Africa Deep Water Case Study of the Effect of Low Salinity Water Injection on the Oil Recovery Factor in Fractured Carbonate Rocks Using Computed Tomography Gimbal Joint Riser: Enabling Free-Hanging and Buoyancy-Free Rigid Risers Flow Assurance Issues on Mexilhão Field Operation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1