{"title":"In-channel particle position and velocity detectors based on particle transit time across uneven inter-gap electrodes","authors":"Tae Yoon Kim, Dong Woo Lee, Young‐Ho Cho","doi":"10.1109/MEMSYS.2007.4433077","DOIUrl":null,"url":null,"abstract":"We present the first proposal to detect both particle position and velocity based on the electrical measurement of particle transit time across uneven inter-gap electrodes. Compared to the previous methods, the present detector provides higher integrability for chip-based systems and achieves higher measurement stability robust to particle size variation. The position uncertainty of polystyrene particles is measured as 3.3%. Particle velocity uncertainty is measured as 2.21% from the fabricated devices, achieving 2.4 times improvement compared to the uncertainty of 5.38% from the conventional optical methods. The stable performance of the present detector insensitive to particle size variation is also verified by the experiments using different particle sizes.","PeriodicalId":6388,"journal":{"name":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"127 1","pages":"485-488"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2007.4433077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We present the first proposal to detect both particle position and velocity based on the electrical measurement of particle transit time across uneven inter-gap electrodes. Compared to the previous methods, the present detector provides higher integrability for chip-based systems and achieves higher measurement stability robust to particle size variation. The position uncertainty of polystyrene particles is measured as 3.3%. Particle velocity uncertainty is measured as 2.21% from the fabricated devices, achieving 2.4 times improvement compared to the uncertainty of 5.38% from the conventional optical methods. The stable performance of the present detector insensitive to particle size variation is also verified by the experiments using different particle sizes.