{"title":"Tracking the critical points of curves evolving under planar curvature flows","authors":"Eszter Fehér, G. Domokos, B. Krauskopf","doi":"10.3934/jcd.2021017","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We are concerned with the evolution of planar, star-like curves and associated shapes under a broad class of curvature-driven geometric flows, which we refer to as the Andrews-Bloore flow. This family of flows has two parameters that control one constant and one curvature-dependent component for the velocity in the direction of the normal to the curve. The Andrews-Bloore flow includes as special cases the well known Eikonal, curve-shortening and affine shortening flows, and for positive parameter values its evolution shrinks the area enclosed by the curve to zero in finite time. A question of key interest has been how various shape descriptors of the evolving shape behave as this limit is approached. Star-like curves (which include convex curves) can be represented by a periodic scalar polar distance function <inline-formula><tex-math id=\"M1\">\\begin{document}$ r(\\varphi) $\\end{document}</tex-math></inline-formula> measured from a reference point, which may or may not be fixed. An important question is how the numbers and the trajectories of critical points of the distance function <inline-formula><tex-math id=\"M2\">\\begin{document}$ r(\\varphi) $\\end{document}</tex-math></inline-formula> and of the curvature <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\kappa(\\varphi) $\\end{document}</tex-math></inline-formula> (characterized by <inline-formula><tex-math id=\"M4\">\\begin{document}$ dr/d\\varphi = 0 $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M5\">\\begin{document}$ d\\kappa /d\\varphi = 0 $\\end{document}</tex-math></inline-formula>, respectively) evolve under the Andrews-Bloore flows for different choices of the parameters.</p><p style='text-indent:20px;'>We present a numerical method that is specifically designed to meet the challenge of computing accurate trajectories of the critical points of an evolving curve up to the vicinity of a limiting shape. Each curve is represented by a piecewise polynomial periodic radial distance function, as determined by a chosen mesh; different types of meshes and mesh adaptation can be chosen to ensure a good balance between accuracy and computational cost. As we demonstrate with test-case examples and two longer case studies, our method allows one to perform numerical investigations into subtle questions of planar curve evolution. More specifically — in the spirit of experimental mathematics — we provide illustrations of some known results, numerical evidence for two stated conjectures, as well as new insights and observations regarding the limits of shapes and their critical points.</p>","PeriodicalId":37526,"journal":{"name":"Journal of Computational Dynamics","volume":"98 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jcd.2021017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
We are concerned with the evolution of planar, star-like curves and associated shapes under a broad class of curvature-driven geometric flows, which we refer to as the Andrews-Bloore flow. This family of flows has two parameters that control one constant and one curvature-dependent component for the velocity in the direction of the normal to the curve. The Andrews-Bloore flow includes as special cases the well known Eikonal, curve-shortening and affine shortening flows, and for positive parameter values its evolution shrinks the area enclosed by the curve to zero in finite time. A question of key interest has been how various shape descriptors of the evolving shape behave as this limit is approached. Star-like curves (which include convex curves) can be represented by a periodic scalar polar distance function \begin{document}$ r(\varphi) $\end{document} measured from a reference point, which may or may not be fixed. An important question is how the numbers and the trajectories of critical points of the distance function \begin{document}$ r(\varphi) $\end{document} and of the curvature \begin{document}$ \kappa(\varphi) $\end{document} (characterized by \begin{document}$ dr/d\varphi = 0 $\end{document} and \begin{document}$ d\kappa /d\varphi = 0 $\end{document}, respectively) evolve under the Andrews-Bloore flows for different choices of the parameters.
We present a numerical method that is specifically designed to meet the challenge of computing accurate trajectories of the critical points of an evolving curve up to the vicinity of a limiting shape. Each curve is represented by a piecewise polynomial periodic radial distance function, as determined by a chosen mesh; different types of meshes and mesh adaptation can be chosen to ensure a good balance between accuracy and computational cost. As we demonstrate with test-case examples and two longer case studies, our method allows one to perform numerical investigations into subtle questions of planar curve evolution. More specifically — in the spirit of experimental mathematics — we provide illustrations of some known results, numerical evidence for two stated conjectures, as well as new insights and observations regarding the limits of shapes and their critical points.
We are concerned with the evolution of planar, star-like curves and associated shapes under a broad class of curvature-driven geometric flows, which we refer to as the Andrews-Bloore flow. This family of flows has two parameters that control one constant and one curvature-dependent component for the velocity in the direction of the normal to the curve. The Andrews-Bloore flow includes as special cases the well known Eikonal, curve-shortening and affine shortening flows, and for positive parameter values its evolution shrinks the area enclosed by the curve to zero in finite time. A question of key interest has been how various shape descriptors of the evolving shape behave as this limit is approached. Star-like curves (which include convex curves) can be represented by a periodic scalar polar distance function \begin{document}$ r(\varphi) $\end{document} measured from a reference point, which may or may not be fixed. An important question is how the numbers and the trajectories of critical points of the distance function \begin{document}$ r(\varphi) $\end{document} and of the curvature \begin{document}$ \kappa(\varphi) $\end{document} (characterized by \begin{document}$ dr/d\varphi = 0 $\end{document} and \begin{document}$ d\kappa /d\varphi = 0 $\end{document}, respectively) evolve under the Andrews-Bloore flows for different choices of the parameters.We present a numerical method that is specifically designed to meet the challenge of computing accurate trajectories of the critical points of an evolving curve up to the vicinity of a limiting shape. Each curve is represented by a piecewise polynomial periodic radial distance function, as determined by a chosen mesh; different types of meshes and mesh adaptation can be chosen to ensure a good balance between accuracy and computational cost. As we demonstrate with test-case examples and two longer case studies, our method allows one to perform numerical investigations into subtle questions of planar curve evolution. More specifically — in the spirit of experimental mathematics — we provide illustrations of some known results, numerical evidence for two stated conjectures, as well as new insights and observations regarding the limits of shapes and their critical points.
期刊介绍:
JCD is focused on the intersection of computation with deterministic and stochastic dynamics. The mission of the journal is to publish papers that explore new computational methods for analyzing dynamic problems or use novel dynamical methods to improve computation. The subject matter of JCD includes both fundamental mathematical contributions and applications to problems from science and engineering. A non-exhaustive list of topics includes * Computation of phase-space structures and bifurcations * Multi-time-scale methods * Structure-preserving integration * Nonlinear and stochastic model reduction * Set-valued numerical techniques * Network and distributed dynamics JCD includes both original research and survey papers that give a detailed and illuminating treatment of an important area of current interest. The editorial board of JCD consists of world-leading researchers from mathematics, engineering, and science, all of whom are experts in both computational methods and the theory of dynamical systems.