A Novel Patient-Specific Regenerative Meniscal Replacement System

A. H. Chan, Noel Young, G. Tran, B. Miles, A. Ruys, P. Boughton
{"title":"A Novel Patient-Specific Regenerative Meniscal Replacement System","authors":"A. H. Chan, Noel Young, G. Tran, B. Miles, A. Ruys, P. Boughton","doi":"10.4028/www.scientific.net/JBBTE.16.83","DOIUrl":null,"url":null,"abstract":"Knee meniscal injuries account for the greatest number of surgical procedures performed by orthopaedic surgeons worldwide. Each year in excess of 400,000 operations are performed in Europe and over one million in the United States and yet no suitable replacement for the meniscus is available. Fibrocartilage tissue engineering holds great potential in the regeneration of meniscal tissue however current developments have been limited. Difficulties in imitating the anisotropic nature of the meniscus, patient specific geometry, attaining sterility assurance requirements remain as developmental challenges for meniscal scaffold devices. A novel approach was developed to rapidly form terminally sterilized pre-packaged scaffold templates into anatomically matched regenerative meniscal implants. Formed meniscal implants exhibited the structural and functional architecture of the native meniscus. Meniscal implants fabricated using this method displayed mechanical properties approaching to that of the native meniscus and imparted rotational stability. Fixation techniques influenced the biomechanical response of implants and 45S5 bioactive glass modification was found to enhance radio-opacity of the scaffold. Biocompatibility of the implant was confirmed using a fibroblast cell culture model.","PeriodicalId":15198,"journal":{"name":"Journal of Biomimetics, Biomaterials and Tissue Engineering","volume":"1 1","pages":"83 - 95"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomimetics, Biomaterials and Tissue Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/JBBTE.16.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Knee meniscal injuries account for the greatest number of surgical procedures performed by orthopaedic surgeons worldwide. Each year in excess of 400,000 operations are performed in Europe and over one million in the United States and yet no suitable replacement for the meniscus is available. Fibrocartilage tissue engineering holds great potential in the regeneration of meniscal tissue however current developments have been limited. Difficulties in imitating the anisotropic nature of the meniscus, patient specific geometry, attaining sterility assurance requirements remain as developmental challenges for meniscal scaffold devices. A novel approach was developed to rapidly form terminally sterilized pre-packaged scaffold templates into anatomically matched regenerative meniscal implants. Formed meniscal implants exhibited the structural and functional architecture of the native meniscus. Meniscal implants fabricated using this method displayed mechanical properties approaching to that of the native meniscus and imparted rotational stability. Fixation techniques influenced the biomechanical response of implants and 45S5 bioactive glass modification was found to enhance radio-opacity of the scaffold. Biocompatibility of the implant was confirmed using a fibroblast cell culture model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新型患者特异性再生半月板置换系统
膝关节半月板损伤是全世界骨科医生进行的最多的外科手术。每年在欧洲进行的手术超过40万例,在美国进行的手术超过100万例,但没有合适的半月板替代品。纤维软骨组织工程在半月板组织再生方面具有巨大的潜力,但目前的进展有限。在模仿半月板的各向异性、患者特定的几何形状、达到无菌保证要求方面的困难仍然是半月板支架装置发展的挑战。开发了一种新的方法来快速形成最终灭菌的预包装支架模板成解剖匹配的再生半月板植入物。形成的半月板植入物显示了天然半月板的结构和功能架构。使用这种方法制作的半月板植入物显示出接近天然半月板的力学性能,并赋予旋转稳定性。固定技术影响植入物的生物力学响应,45S5生物活性玻璃修饰被发现可以增强支架的放射性不透明度。利用成纤维细胞培养模型证实了植入物的生物相容性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A biomechanical device for human sensorimotor function Programmable materials for mechanobiology Grasshopper Knee Joint - Torque Analysis of Actuators Using Ionic Polymer Metal Composites (IPMC) Effect of Unilateral Non-Rhythmical Stimulation on Bilateral Cerebral Cortex and Muscle Activation in People Strong and Bioactive Tri-Calcium Phosphate Scaffolds with Tube-Like Macropores
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1