Buxu Tongyu Granule Alleviates Myocardial Ischemia by Activating Vascular Smooth Muscle Cell Soluble Guanylate Cyclase to Inhibit Abnormal Vasomotion

IF 10.1 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Engineering Pub Date : 2024-07-01 DOI:10.1016/j.eng.2023.06.009
{"title":"Buxu Tongyu Granule Alleviates Myocardial Ischemia by Activating Vascular Smooth Muscle Cell Soluble Guanylate Cyclase to Inhibit Abnormal Vasomotion","authors":"","doi":"10.1016/j.eng.2023.06.009","DOIUrl":null,"url":null,"abstract":"<div><p>Myocardial ischemia is a serious threat to human health, and vascular dysfunction is its main cause. Buxu Tongyu (BXTY) Granule is an effective traditional Chinese medicine (TCM) for treating myocardial ischemia. However, the underlying mechanism of BXTY is still unclear. In this study, we demonstrate that BXTY ameliorates myocardial ischemia by activating the soluble guanylate cyclase (sGC)–3′,5′-cyclic guanosine monophosphate (cGMP)–protein kinase G (PKG) signaling pathway in vascular smooth muscle cells (VSMCs) to dilate the arteries. BXTY was given by gavage for ten consecutive days before establishing an animal model of acute myocardial ischemia in mice via the intraperitoneal injection of pituitrin. The results showed that BXTY alleviated the symptoms of myocardial ischemia induced by pituitrin in mice, including electrocardiogram abnormalities and changes in plasma enzymes. In addition, BXTY dilated pre-constricted blood vessels and inhibited the vasoconstriction of the superior mesenteric artery in a dose-dependent but endothelial-independent manner. These effects were eliminated by pre-incubating vascular rings with the sGC inhibitors NS 2028 or ODQ, or with the PKG inhibitor KT 5823. Moreover, BXTY increased the protein expression of sGC-β<sub>1</sub> and the intracellular second messenger cGMP level in mouse aortic vascular smooth muscle cells (MOVAs). NS 2028 or ODQ reversed these effects of BXTY. The expression level of the cGMP downstream effector protein PKG-1 increased after treating MOVAs with BXTY. NS 2028, ODQ, or KT 5823 also reversed this effect of BXTY. In conclusion, BXTY can improve the symptoms of acute myocardial ischemia in mice, and activating the sGC–cGMP–PKG pathway in VSMCs to induce vasodilation is its key pharmacodynamic mechanism.</p></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"38 ","pages":"Pages 133-143"},"PeriodicalIF":10.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095809923002904/pdfft?md5=165a16d4d76a7ff08cb49f4a012b0182&pid=1-s2.0-S2095809923002904-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809923002904","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Myocardial ischemia is a serious threat to human health, and vascular dysfunction is its main cause. Buxu Tongyu (BXTY) Granule is an effective traditional Chinese medicine (TCM) for treating myocardial ischemia. However, the underlying mechanism of BXTY is still unclear. In this study, we demonstrate that BXTY ameliorates myocardial ischemia by activating the soluble guanylate cyclase (sGC)–3′,5′-cyclic guanosine monophosphate (cGMP)–protein kinase G (PKG) signaling pathway in vascular smooth muscle cells (VSMCs) to dilate the arteries. BXTY was given by gavage for ten consecutive days before establishing an animal model of acute myocardial ischemia in mice via the intraperitoneal injection of pituitrin. The results showed that BXTY alleviated the symptoms of myocardial ischemia induced by pituitrin in mice, including electrocardiogram abnormalities and changes in plasma enzymes. In addition, BXTY dilated pre-constricted blood vessels and inhibited the vasoconstriction of the superior mesenteric artery in a dose-dependent but endothelial-independent manner. These effects were eliminated by pre-incubating vascular rings with the sGC inhibitors NS 2028 or ODQ, or with the PKG inhibitor KT 5823. Moreover, BXTY increased the protein expression of sGC-β1 and the intracellular second messenger cGMP level in mouse aortic vascular smooth muscle cells (MOVAs). NS 2028 or ODQ reversed these effects of BXTY. The expression level of the cGMP downstream effector protein PKG-1 increased after treating MOVAs with BXTY. NS 2028, ODQ, or KT 5823 also reversed this effect of BXTY. In conclusion, BXTY can improve the symptoms of acute myocardial ischemia in mice, and activating the sGC–cGMP–PKG pathway in VSMCs to induce vasodilation is its key pharmacodynamic mechanism.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
步长通瘀颗粒通过激活血管平滑肌细胞可溶性鸟苷酸环化酶抑制异常血管运动来缓解心肌缺血症状
心肌缺血严重威胁人类健康,而血管功能障碍是其主要病因。步长通瘀颗粒是治疗心肌缺血的有效中药。然而,BXTY 的内在机制仍不清楚。在这项研究中,我们证明 BXTY 可通过激活血管平滑肌细胞(VSMCs)中的可溶性鸟苷酸环化酶(sGC)-3′,5′-环鸟苷单磷酸(cGMP)-蛋白激酶 G(PKG)信号通路来扩张动脉,从而改善心肌缺血。在通过腹腔注射垂体促肾上腺皮质激素建立小鼠急性心肌缺血动物模型之前,连续十天灌胃服用 BXTY。结果表明,BXTY 可减轻垂体促肾上腺皮质激素诱发的小鼠心肌缺血症状,包括心电图异常和血浆酶的变化。此外,BXTY 还能扩张预先收缩的血管,并抑制肠系膜上动脉的血管收缩。用 sGC 抑制剂 NS 2028 或 ODQ 或 PKG 抑制剂 KT 5823 预先孵育血管环后,这些效应被消除。此外,BXTY 还能增加小鼠主动脉血管平滑肌细胞(MOVAs)中 sGC-β1 蛋白表达和细胞内第二信使 cGMP 水平。NS 2028 或 ODQ 逆转了 BXTY 的这些作用。用 BXTY 处理 MOVAs 后,cGMP 下游效应蛋白 PKG-1 的表达水平升高。NS 2028、ODQ 或 KT 5823 也逆转了 BXTY 的这种作用。总之,BXTY 可改善小鼠急性心肌缺血的症状,而激活血管内皮细胞的 sGC-cGMP-PKG 通路以诱导血管扩张是其关键的药效学机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering
Engineering Environmental Science-Environmental Engineering
自引率
1.60%
发文量
335
审稿时长
35 days
期刊介绍: Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.
期刊最新文献
Digital Twins for Engineering Asset Management: Synthesis, Analytical Framework, and Future Directions Understanding the Resilience of Urban Rail Transit: Concepts, Reviews, and Trends Direct Ethylene Purification from Cracking Gas via a Metal–Organic Framework Through Pore Geometry Fitting Utilization of Bubbles and Oil for Microplastic Capture from Water Robust, Flexible, and Superhydrophobic Fabrics for High-Efficiency and Ultrawide-Band Microwave Absorption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1