{"title":"Simple second-order finite differences for elliptic PDEs with discontinuous coefficients and interfaces","authors":"C. Tzou, S. Stechmann","doi":"10.2140/camcos.2019.14.121","DOIUrl":null,"url":null,"abstract":"In multi-phase fluid flow, fluid-structure interaction, and other applications, partial differential equations (PDEs) often arise with discontinuous coefficients and singular sources (e.g., Dirac delta functions). These complexities arise due to changes in material properties at an immersed interface or embedded boundary, which may have an irregular shape. Consequently, the solution and its gradient can be discontinuous, and numerical methods can be difficult to design. Here a new method is presented and analyzed, using a simple formulation of one-dimensional finite differences on a Cartesian grid, allowing for a relatively easy setup for one-, two-, or three-dimensional problems. The method preserves a sharp interface with discontinuous solutions, obtained from a small number of iterations (approximately five) of solving a symmetric linear system with updates to the right- hand side. Second-order accuracy is rigorously proven in one spatial dimension and demonstrated through numerical examples in two and three spatial dimensions. The method is tested here on the variable-coefficient Poisson equation, and it could be extended for use on time-dependent problems of heat transfer, fluid dynamics, or other applications.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/camcos.2019.14.121","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8
Abstract
In multi-phase fluid flow, fluid-structure interaction, and other applications, partial differential equations (PDEs) often arise with discontinuous coefficients and singular sources (e.g., Dirac delta functions). These complexities arise due to changes in material properties at an immersed interface or embedded boundary, which may have an irregular shape. Consequently, the solution and its gradient can be discontinuous, and numerical methods can be difficult to design. Here a new method is presented and analyzed, using a simple formulation of one-dimensional finite differences on a Cartesian grid, allowing for a relatively easy setup for one-, two-, or three-dimensional problems. The method preserves a sharp interface with discontinuous solutions, obtained from a small number of iterations (approximately five) of solving a symmetric linear system with updates to the right- hand side. Second-order accuracy is rigorously proven in one spatial dimension and demonstrated through numerical examples in two and three spatial dimensions. The method is tested here on the variable-coefficient Poisson equation, and it could be extended for use on time-dependent problems of heat transfer, fluid dynamics, or other applications.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.