A.I. de Sá , A. Capelo , A. Esteves , L. Cangueiro , A. Almeida , R. Vilar , C.M. Rangel
{"title":"Key issues to high electroactivity for methanol oxidation and oxygen reduction of Pt-based supported catalyst in fuel cells relevant environment","authors":"A.I. de Sá , A. Capelo , A. Esteves , L. Cangueiro , A. Almeida , R. Vilar , C.M. Rangel","doi":"10.1016/j.ctmat.2017.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>In this work some of the key issues which affect the performance of catalysts for the anode and cathode electrodes in Direct Methanol Fuel Cells are analyzed. To deal with present challenges and overcome limitations different approaches have been implemented, which include catalyst support diversification and functionalization, control of particle size and the introduction of Pt alloying and heat treatment in order to enhance the rate of critical reactions such as CO electroxidation and oxygen reduction reaction and also reduce Pt loading. A catalyst design strategy has been devised which incorporates the mentioned approaches in order to tackle various critical aspects for both electroactivity and stability, considered essential to boost Direct Methanol Fuel Cells technology.</p></div>","PeriodicalId":10198,"journal":{"name":"Ciência & Tecnologia dos Materiais","volume":"28 2","pages":"Pages 88-98"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ctmat.2017.01.001","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ciência & Tecnologia dos Materiais","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0870831217300022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this work some of the key issues which affect the performance of catalysts for the anode and cathode electrodes in Direct Methanol Fuel Cells are analyzed. To deal with present challenges and overcome limitations different approaches have been implemented, which include catalyst support diversification and functionalization, control of particle size and the introduction of Pt alloying and heat treatment in order to enhance the rate of critical reactions such as CO electroxidation and oxygen reduction reaction and also reduce Pt loading. A catalyst design strategy has been devised which incorporates the mentioned approaches in order to tackle various critical aspects for both electroactivity and stability, considered essential to boost Direct Methanol Fuel Cells technology.