MATHEMATICAL MODELLING OF UTILIZATION WASTE GASES FROM INDUSTRIAL FURNACES

H. Rusinowski, A. Milejski, Z. Buliński
{"title":"MATHEMATICAL MODELLING OF UTILIZATION WASTE GASES FROM INDUSTRIAL FURNACES","authors":"H. Rusinowski, A. Milejski, Z. Buliński","doi":"10.7494/MECH.2013.32.4.164","DOIUrl":null,"url":null,"abstract":"Combustible waste gases are by-products of many technological processes. They vary in their calorific value and are used to decrease the usage of gases whose calorific value is higher. Coke oven gas from the coking process and process gases from an electric furnace in a copper plant are examples of such gases. Composition and calorific value of coke oven gas depend on coking parameters as well as on the type and quality of coal. The most common process where the coke oven gas is used is the process of heating combustion air in a heat regenerator. The gases from the electric furnace (due to low calorific value) require post combustion at the beginning of their disposal process. The paper addresses mathematical modelling of a coke oven battery regenerator as well as mathematical modelling of post combustion and cooling the electric furnace process gases. The regenerator mathematical model was elaborated for the simplified geometry of a real object making the assumptions for the heat transfer equations. The post combustion and cooling processes of the electric furnace gases are modelled with the aid of the Ansys software. This software was used for both elaborate simplified geometry of the analysed object and carry out the simulations. Mathematical description of occurring processes includes in this case combustion, turbulence and heat transfer.","PeriodicalId":38333,"journal":{"name":"International Journal of Mechanics and Control","volume":"319 1","pages":"164"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/MECH.2013.32.4.164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Combustible waste gases are by-products of many technological processes. They vary in their calorific value and are used to decrease the usage of gases whose calorific value is higher. Coke oven gas from the coking process and process gases from an electric furnace in a copper plant are examples of such gases. Composition and calorific value of coke oven gas depend on coking parameters as well as on the type and quality of coal. The most common process where the coke oven gas is used is the process of heating combustion air in a heat regenerator. The gases from the electric furnace (due to low calorific value) require post combustion at the beginning of their disposal process. The paper addresses mathematical modelling of a coke oven battery regenerator as well as mathematical modelling of post combustion and cooling the electric furnace process gases. The regenerator mathematical model was elaborated for the simplified geometry of a real object making the assumptions for the heat transfer equations. The post combustion and cooling processes of the electric furnace gases are modelled with the aid of the Ansys software. This software was used for both elaborate simplified geometry of the analysed object and carry out the simulations. Mathematical description of occurring processes includes in this case combustion, turbulence and heat transfer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
工业炉废气利用的数学模型
可燃废气是许多工艺过程的副产品。它们的热值各不相同,用于减少热值较高的气体的使用。来自焦化过程的焦炉气体和来自铜厂电炉的过程气体都是这种气体的例子。焦炉煤气的组成和热值不仅与焦化参数有关,还与煤的种类和质量有关。使用焦炉煤气最常见的过程是在蓄热器中加热燃烧空气的过程。来自电炉的气体(由于热值低)需要在处理过程开始时进行后燃烧。本文讨论了焦炉蓄电池蓄热器的数学建模,以及电炉过程气体燃烧后和冷却后的数学建模。根据实际物体的简化几何形状,在传热方程的假设条件下,建立了蓄热器的数学模型。利用Ansys软件对电炉煤气的燃烧后和冷却过程进行了模拟。利用该软件对分析对象进行了精细的几何简化,并进行了仿真。发生过程的数学描述包括在这种情况下燃烧,湍流和传热。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Mechanics and Control
International Journal of Mechanics and Control Engineering-Computational Mechanics
CiteScore
2.10
自引率
0.00%
发文量
0
期刊最新文献
PHYSICAL MODEL OF VEHICLE ENGINE MOUNT WITH MAGNETORHEOLOGICAL DAMPER EXPERIMENTAL INVESTIGATIONS ON ENERGY HARVESTING FROM MECHANICAL VIBRATIONS OF BUILDINGS USING MACRO FIBER COMPOSITE THE APPLICATION OF SELF-EXCITED VIBRATIONS FOR DYNAMIC STRAIN MEASUREMENTS CARRIED OUT BY VIBRATING WIRE TENSOMETERS Complete kinematic analysis of the Stewart-Gough platform by unit quaternions TEST BED FOR THE SIMULATION OF MAGNETIC FIELD MEASUREMENTS OF LOW EARTH ORBIT SATELLITES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1