Thao Le thi, Trang Phan Thi Thuy, Phuong Tran Thi Thu, Lan Nguyen Thi, Thang Nguyen Van, Vien Vo
{"title":"Synthesis of Ge/C composite as an anode material for lithium ion batteries","authors":"Thao Le thi, Trang Phan Thi Thuy, Phuong Tran Thi Thu, Lan Nguyen Thi, Thang Nguyen Van, Vien Vo","doi":"10.51316/jca.2022.065","DOIUrl":null,"url":null,"abstract":"The Ge/C composite was prepared by hydrothermal method using Germani (Ge) and carbon (C) as precursors, in which C was prepared from waste banana peel as biomass source and Ge was obtained from reduction of GeO2 by Mg at 650 oC. The synthesized composite was characterized by X-ray diffraction (XRD), Infrared spectroscopy (IR), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM); and used as lithium ion battery anode material. The results showed that the Ge/C anode exhibited a higher capacity and stablity than those of the pure Ge. This observation can indicate that the Ge/C composite may be a new class of promising negative electrode material for lithium ion batteries in the future.","PeriodicalId":23507,"journal":{"name":"Vietnam Journal of Catalysis and Adsorption","volume":"173 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Catalysis and Adsorption","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51316/jca.2022.065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The Ge/C composite was prepared by hydrothermal method using Germani (Ge) and carbon (C) as precursors, in which C was prepared from waste banana peel as biomass source and Ge was obtained from reduction of GeO2 by Mg at 650 oC. The synthesized composite was characterized by X-ray diffraction (XRD), Infrared spectroscopy (IR), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM); and used as lithium ion battery anode material. The results showed that the Ge/C anode exhibited a higher capacity and stablity than those of the pure Ge. This observation can indicate that the Ge/C composite may be a new class of promising negative electrode material for lithium ion batteries in the future.