Distributed multi-sensor network for real time monitoring of illumination states for a reconfigurable solar photovoltaic array

B. Patnaik, J. Mohod, S. Duttagupta
{"title":"Distributed multi-sensor network for real time monitoring of illumination states for a reconfigurable solar photovoltaic array","authors":"B. Patnaik, J. Mohod, S. Duttagupta","doi":"10.1109/ISPTS.2012.6260892","DOIUrl":null,"url":null,"abstract":"In a solar photovoltaic (SPV) array [mxn] the solar modules are connected in series and parallel to achieve desired power output. The SPV array performance depends on different parameters such as incident insolation, temperature, array layout, shading etc. Shading due to cloud cover results in Non-Uniform Illumination (NUI STATES- BRIGHT, GREY and DARK). Mismatch in currents and voltages of the modules due to change in one or more parameters leads to loss in output power. Hence real time monitoring of current (I, di/dt) for each solar module and bypass diode in the SPV array is necessary. In addition temperature sensors are required to monitor open-circuit voltage (Voc) fluctuations. Previously, we have demonstrated optimization of an SPV array in BRIGHT and DARK state [1]. However in field testing we have observed an intermediate GREY state as well. The power output can be depressed in a string having multiple state modules in series. In this paper we have proposed a reconfiguration strategy whereby modules are categorized into BRIGHT, GREY, and DARK illumination states. Based on this strategy it has been demonstrated that a reconfigured SPV array will yield maximum power at the highest operating voltage.","PeriodicalId":6431,"journal":{"name":"2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1)","volume":"26 1","pages":"106-109"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPTS.2012.6260892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

In a solar photovoltaic (SPV) array [mxn] the solar modules are connected in series and parallel to achieve desired power output. The SPV array performance depends on different parameters such as incident insolation, temperature, array layout, shading etc. Shading due to cloud cover results in Non-Uniform Illumination (NUI STATES- BRIGHT, GREY and DARK). Mismatch in currents and voltages of the modules due to change in one or more parameters leads to loss in output power. Hence real time monitoring of current (I, di/dt) for each solar module and bypass diode in the SPV array is necessary. In addition temperature sensors are required to monitor open-circuit voltage (Voc) fluctuations. Previously, we have demonstrated optimization of an SPV array in BRIGHT and DARK state [1]. However in field testing we have observed an intermediate GREY state as well. The power output can be depressed in a string having multiple state modules in series. In this paper we have proposed a reconfiguration strategy whereby modules are categorized into BRIGHT, GREY, and DARK illumination states. Based on this strategy it has been demonstrated that a reconfigured SPV array will yield maximum power at the highest operating voltage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于可重构太阳能光伏阵列照明状态实时监测的分布式多传感器网络
在太阳能光伏(SPV)阵列[mxn]中,太阳能组件以串联和并联的方式连接以获得所需的功率输出。SPV阵列的性能取决于不同的参数,如入射日照、温度、阵列布局、遮阳等。由于云层覆盖造成的阴影导致非均匀照明(NUI状态-亮,灰和暗)。由于一个或多个参数的变化导致模块的电流和电压不匹配,导致输出功率损失。因此,实时监测电流(I, di/dt)的每个太阳能组件和旁路二极管在SPV阵列是必要的。此外,还需要温度传感器来监测开路电压(Voc)波动。先前,我们已经演示了在BRIGHT和DARK状态下SPV阵列的优化[1]。然而,在现场测试中,我们也观察到中间灰色状态。功率输出可以在具有多个状态模块串联的字符串中被压抑。在本文中,我们提出了一种重新配置策略,该策略将模块分类为BRIGHT, GREY和DARK照明状态。基于该策略,已证明重新配置的SPV阵列将在最高工作电压下产生最大功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gas sensing properties of the fluorine-doped tin oxide thin films Prepared by advanced spray pyrolysis Tailoring of optical band gap, morphology and surface wettability of bath deposited nanocrystalline ZnxCd(1−x)S thin films with incorporation of Zn for solar cell application Comparison of micro fabricated C and S bend shape SU-8 polymer waveguide of different bending diameters for maximum sensitivity A theoretical approach to study the temperature dependent performance of a SiC MESFET in sensor application. Effect of RE3+ (RE = Eu, Sm) ion doping on dielectric properties of nano-wollastonite synthesized by combustion method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1