Development and Successful Field Trial of Retrievable, Instrumented & Tandem Downhole Isolation Valve RIT-DIV System

Diana Amangeldiyeva, A. Aliyeva, Yerlan Amanbayev, J. S. Toralde, Tim Higginson, Akzharkyn Assetkyzy Tilekkabyl, Dinmukhamed Jangaliuly Nurseiitov, Yong Fan, Gareth Cameron
{"title":"Development and Successful Field Trial of Retrievable, Instrumented & Tandem Downhole Isolation Valve RIT-DIV System","authors":"Diana Amangeldiyeva, A. Aliyeva, Yerlan Amanbayev, J. S. Toralde, Tim Higginson, Akzharkyn Assetkyzy Tilekkabyl, Dinmukhamed Jangaliuly Nurseiitov, Yong Fan, Gareth Cameron","doi":"10.2118/206440-ms","DOIUrl":null,"url":null,"abstract":"\n This paper describes the development and field deployment of a new downhole isolation valve system called the Retrievable, Instrumented & Tandem Downhole Deployment Valve (RIT-DDV). The purpose of this technology is to provide a temporary mechanical barrier to isolate and monitor the well during drilling operations in an environment where a full column of single-phase fluid cannot be maintained.\n The RIT-DDV is based on predominantly used downhole isolation valve (DIV) design and technology, which is a hydraulic flapper-type isolation device installed in the casing that seals the open hole during pipe tripping operations.\n The key features of the new RIT-DDV systems are dual flapper valves with three downhole pressure and temperature gauges to take measurements above, between, and below the flappers. The advantage of this configuration is that it enhances safety by enabling double-block-and-bleed system functionality, providing valve redundancy, and moreover allowing for continuous real-time monitoring of downhole well conditions. In addition, the RIT-DDV is designed to be reusable and can be tested upon installation and replaced if necessary. The RIT-DDV system enabled the operator to isolate and monitor the well while drilling through a depleted formation that prevented drilling with a full column of single-phase drilling fluid. The RIT-DDV was successfully trialed in western Kazakhstan and demonstrated the potential of this technology to enhance the safety of drilling heavily fractured carbonate formations with reservoir fluids containing hydrogen sulfide (H2S) / carbon dioxide (CO2) that are prone to total loss of circulation. The downhole pressure / temperature monitoring capabilities that the system provides within the casing string helped drill through the depleted fractured carbonate reservoir section without incurring non-productive time (NPT).","PeriodicalId":11177,"journal":{"name":"Day 4 Fri, October 15, 2021","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Fri, October 15, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/206440-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes the development and field deployment of a new downhole isolation valve system called the Retrievable, Instrumented & Tandem Downhole Deployment Valve (RIT-DDV). The purpose of this technology is to provide a temporary mechanical barrier to isolate and monitor the well during drilling operations in an environment where a full column of single-phase fluid cannot be maintained. The RIT-DDV is based on predominantly used downhole isolation valve (DIV) design and technology, which is a hydraulic flapper-type isolation device installed in the casing that seals the open hole during pipe tripping operations. The key features of the new RIT-DDV systems are dual flapper valves with three downhole pressure and temperature gauges to take measurements above, between, and below the flappers. The advantage of this configuration is that it enhances safety by enabling double-block-and-bleed system functionality, providing valve redundancy, and moreover allowing for continuous real-time monitoring of downhole well conditions. In addition, the RIT-DDV is designed to be reusable and can be tested upon installation and replaced if necessary. The RIT-DDV system enabled the operator to isolate and monitor the well while drilling through a depleted formation that prevented drilling with a full column of single-phase drilling fluid. The RIT-DDV was successfully trialed in western Kazakhstan and demonstrated the potential of this technology to enhance the safety of drilling heavily fractured carbonate formations with reservoir fluids containing hydrogen sulfide (H2S) / carbon dioxide (CO2) that are prone to total loss of circulation. The downhole pressure / temperature monitoring capabilities that the system provides within the casing string helped drill through the depleted fractured carbonate reservoir section without incurring non-productive time (NPT).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可回收式、仪表式、串联式井下隔离阀RIT-DIV系统的研制与成功现场试验
本文介绍了一种新型井下隔离阀系统的开发和现场部署,该系统被称为可回收、仪表化和串联井下部署阀(RIT-DDV)。该技术的目的是在钻井作业期间提供临时机械屏障,在无法维持全柱单相流体的环境中隔离和监测油井。RIT-DDV基于常用的井下隔离阀(DIV)设计和技术,这是一种安装在套管中的液压挡板式隔离装置,在起下钻过程中对裸眼进行密封。新型RIT-DDV系统的主要特点是双挡板阀,带有三个井下压力和温度计,可以在挡板的上方、之间和下方进行测量。这种配置的优势在于,它通过实现双堵放系统功能,提供冗余阀,提高了安全性,并且可以连续实时监测井下井况。此外,RIT-DDV设计为可重复使用,可以在安装时进行测试,并在必要时进行更换。RIT-DDV系统使作业者能够在钻穿衰竭地层时隔离和监测井,从而避免使用全柱单相钻井液进行钻井。RIT-DDV在哈萨克斯坦西部成功进行了试验,证明了该技术在钻进含硫化氢(H2S) /二氧化碳(CO2)的严重裂缝碳酸盐地层方面的潜力,这些地层容易发生循环完全漏失。该系统在套管柱内提供的井下压力/温度监测功能帮助钻过了枯竭的裂缝性碳酸盐岩储层段,而没有产生非生产时间(NPT)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experience of Application of Different Multiphase Metering Technologies for Cold Production and High Viscosity Oil Systems Evaluating Efficiency of Multilateral Producing Wells in Bottom Water-Drive Reservoir with a Gas Cap by Distributed Fiber-Optic Sensors and Continuous Pressure Monitoring Operation Features of Wells with an Extended Horizontal Wellbore and Multistage Hydraulic Fracturing Operation in Bazhenov Formation Comparative Analysis of Tracers Against Pressure Pulse Code Interference Testing based on the Numerical Simulations of the Synthetic Oilfields with Complicated Geology Innovative Approach to Analysis Drilling Tool Works
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1