{"title":"First Abu Dhabi 2D/3D Seismic Merge. Fast Track Approach For Seismic Data Integration at Regional Scale in Exploration Studies","authors":"Humberto Parra, M. Caeiro, F. Neves, J. Gomes","doi":"10.2118/193066-MS","DOIUrl":null,"url":null,"abstract":"\n One of the main challenges in the execution of regional studies is the integration of large amounts of data coming from different sources and different disciplines. Even within the geophysical domain, integration of thousands of 2D seismic lines and dozens of 3D seismic volumes is a very demanding task. The aim of this paper is to provide a description on the use of fast track methodologies for the integration of 3D and 2D seismic data at country level for regional studies.\n This approach relies on a pragmatic way of merging seismic, processing data as point sets instead of traces, providing the flexibility of handling seismic information inside the geomodelling and geostatistical domain, where a grid of points can be resampled, reoriented, and ultimately merged into any desired geometry and resolution. The technical challenges include different spatial sampling, grid orientations, frequency contents and event timings. A preconditioning step has been included in the workflow in order to homogenize the data into a common ground, addressing compatibility issues of the different vintages through amplitude scaling, noise reduction and frequency balancing.\n Merging in a practical approach different 2D/3D seismic data sets into a single volume reduces drastically the amount of time spent in the data analysis and interpretation of geological features at regional scale. In this case of study, the workflow enables a feasible path for merging all seismic data acquired in Abu Dhabi over the past seven decades. The integrated volume helps geophysicists and geologists to carry out better seismic interpretations and perform proper structural analysis and prospect assessments. Finally, the seismic data has been integrated into a unique survey by interpolating the 2D and 3D seismic data to fill the gaps and generating a pseudo 3D survey at country scale. This regional scale single 3D seismic data allows better understanding of the geological and structural trends present in Abu Dhabi.\n This innovative approach offers a major advantage for regional data integration, expediting subsequent stages of seismic interpretation and description of the geological features at large scale for exploration assessments, prospect generation and 3D reservoir characterization.","PeriodicalId":11014,"journal":{"name":"Day 1 Mon, November 12, 2018","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, November 12, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/193066-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
One of the main challenges in the execution of regional studies is the integration of large amounts of data coming from different sources and different disciplines. Even within the geophysical domain, integration of thousands of 2D seismic lines and dozens of 3D seismic volumes is a very demanding task. The aim of this paper is to provide a description on the use of fast track methodologies for the integration of 3D and 2D seismic data at country level for regional studies.
This approach relies on a pragmatic way of merging seismic, processing data as point sets instead of traces, providing the flexibility of handling seismic information inside the geomodelling and geostatistical domain, where a grid of points can be resampled, reoriented, and ultimately merged into any desired geometry and resolution. The technical challenges include different spatial sampling, grid orientations, frequency contents and event timings. A preconditioning step has been included in the workflow in order to homogenize the data into a common ground, addressing compatibility issues of the different vintages through amplitude scaling, noise reduction and frequency balancing.
Merging in a practical approach different 2D/3D seismic data sets into a single volume reduces drastically the amount of time spent in the data analysis and interpretation of geological features at regional scale. In this case of study, the workflow enables a feasible path for merging all seismic data acquired in Abu Dhabi over the past seven decades. The integrated volume helps geophysicists and geologists to carry out better seismic interpretations and perform proper structural analysis and prospect assessments. Finally, the seismic data has been integrated into a unique survey by interpolating the 2D and 3D seismic data to fill the gaps and generating a pseudo 3D survey at country scale. This regional scale single 3D seismic data allows better understanding of the geological and structural trends present in Abu Dhabi.
This innovative approach offers a major advantage for regional data integration, expediting subsequent stages of seismic interpretation and description of the geological features at large scale for exploration assessments, prospect generation and 3D reservoir characterization.