Fractures and Flow Patterns Detection in Carbonate Reservoirs Using Intelligent Sensor Selection in a Deep Learning and Uncertainty Framework

Klemens Katterbauer, A. Marsala, Abdallah Al Shehri, A. Yousif
{"title":"Fractures and Flow Patterns Detection in Carbonate Reservoirs Using Intelligent Sensor Selection in a Deep Learning and Uncertainty Framework","authors":"Klemens Katterbauer, A. Marsala, Abdallah Al Shehri, A. Yousif","doi":"10.2118/204767-ms","DOIUrl":null,"url":null,"abstract":"\n 4th Industrial Revolution (4IR) technologies have assumed critical importance in the oil and gas industry, enabling data analysis and automation at unprecedented levels. Formation evaluation and reservoir monitoring are crucial areas for optimizing reservoir production, maximizing sweep efficiency and characterizing the reservoirs. Automation, robotics and artificial intelligence (AI) have led to tremendous transformations in these areas, in particular in subsurface sensing. We present a novel 4IR inspired framework for the real-time sensor selection for subsurface pressure and temperature monitoring, as well as reservoir evaluation. The framework encompasses a deep learning technique for sensor data uncertainty estimation, which is then integrated into an integer programming framework for the optimal selection of sensors to monitor the reservoir formation. The results are rather promising, showing that a relatively small numbers of sensors can be utilized to properly monitor the fractured reservoir structure.","PeriodicalId":11024,"journal":{"name":"Day 4 Wed, December 01, 2021","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Wed, December 01, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204767-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

4th Industrial Revolution (4IR) technologies have assumed critical importance in the oil and gas industry, enabling data analysis and automation at unprecedented levels. Formation evaluation and reservoir monitoring are crucial areas for optimizing reservoir production, maximizing sweep efficiency and characterizing the reservoirs. Automation, robotics and artificial intelligence (AI) have led to tremendous transformations in these areas, in particular in subsurface sensing. We present a novel 4IR inspired framework for the real-time sensor selection for subsurface pressure and temperature monitoring, as well as reservoir evaluation. The framework encompasses a deep learning technique for sensor data uncertainty estimation, which is then integrated into an integer programming framework for the optimal selection of sensors to monitor the reservoir formation. The results are rather promising, showing that a relatively small numbers of sensors can be utilized to properly monitor the fractured reservoir structure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习和不确定性框架的智能传感器选择碳酸盐岩储层裂缝和流动模式检测
第四次工业革命(4IR)技术在油气行业发挥了至关重要的作用,使数据分析和自动化达到了前所未有的水平。储层评价和储层监测是优化储层产量、最大化波及效率和表征储层的关键领域。自动化、机器人技术和人工智能(AI)已经导致了这些领域的巨大变革,特别是在地下传感领域。我们提出了一种新的4IR启发框架,用于实时传感器选择,用于地下压力和温度监测以及储层评价。该框架包含用于传感器数据不确定性估计的深度学习技术,然后将其集成到整数规划框架中,以优化传感器的选择,以监测储层。结果表明,相对较少的传感器可以用于裂缝性储层结构的监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Condensate Banking Removal Using Slow Release of In-Situ Energized Fluid Full-Field History-Matching of Commingling Stacked Reservoirs: A Case Study of an Oman Southern Asset Recovery Improvement Using Geological, Technical and Operational Factors of Field Development That Influence the Character of Inflow Profiles in Horizontal Laterals Unlocking Growth Opportunities Through Saturation Evaluation Behind Complex Completion by Applying State-of-Art Pulsed Neutron Technology Development of New Models to Determine the Rheological Parameters of Water-based Drilling Fluid Using Artificial Intelligence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1