Classification of Unwanted SMS Data (Spam) with Text Mining Techniques

IF 3.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Artificial Intelligence and Soft Computing Research Pub Date : 2022-12-06 DOI:10.55195/jscai.1210559
Rasim Çekik
{"title":"Classification of Unwanted SMS Data (Spam) with Text Mining Techniques","authors":"Rasim Çekik","doi":"10.55195/jscai.1210559","DOIUrl":null,"url":null,"abstract":"Text mining, which derives information from written sources such as websites, books, e-mails, articles, and online news, processes and structures data using advanced approaches. The vast majority of SMS (Short Message Service) messages are unwanted short text documents. Effectively classifying these documents will aid in the detection of spam. The study attempted to identify the most effective techniques on SMS data at each stage of text mining. Four of the most well-known feature selection approaches were used, each of which is one of these parameters. As a result, the strategy that yielded the best results was chosen. In addition, another parameter that produces the best results with this approach, the classifier, was determined. The DFS feature selection approach produced the best results with the SVM classifier, according to the experimental results. This study establishes a general framework for future research in this area that will employ text mining techniques.","PeriodicalId":48494,"journal":{"name":"Journal of Artificial Intelligence and Soft Computing Research","volume":"12 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Soft Computing Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.55195/jscai.1210559","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Text mining, which derives information from written sources such as websites, books, e-mails, articles, and online news, processes and structures data using advanced approaches. The vast majority of SMS (Short Message Service) messages are unwanted short text documents. Effectively classifying these documents will aid in the detection of spam. The study attempted to identify the most effective techniques on SMS data at each stage of text mining. Four of the most well-known feature selection approaches were used, each of which is one of these parameters. As a result, the strategy that yielded the best results was chosen. In addition, another parameter that produces the best results with this approach, the classifier, was determined. The DFS feature selection approach produced the best results with the SVM classifier, according to the experimental results. This study establishes a general framework for future research in this area that will employ text mining techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用文本挖掘技术分类不需要的短信数据(垃圾短信)
文本挖掘从书面来源(如网站、书籍、电子邮件、文章和在线新闻)中获取信息,使用高级方法处理和构建数据。绝大多数SMS(短消息服务)消息都是不需要的短文本文档。有效地对这些文档进行分类将有助于检测垃圾邮件。本研究试图在文本挖掘的每个阶段确定SMS数据的最有效技术。我们使用了四种最著名的特征选择方法,每一种方法都是这些参数中的一个。结果,选择了产生最佳结果的策略。此外,还确定了使用该方法产生最佳结果的另一个参数,即分类器。实验结果表明,DFS特征选择方法在支持向量机分类器上的效果最好。本研究为该领域将采用文本挖掘技术的未来研究建立了一个总体框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Artificial Intelligence and Soft Computing Research
Journal of Artificial Intelligence and Soft Computing Research COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
7.00
自引率
25.00%
发文量
10
审稿时长
24 weeks
期刊介绍: Journal of Artificial Intelligence and Soft Computing Research (available also at Sciendo (De Gruyter)) is a dynamically developing international journal focused on the latest scientific results and methods constituting traditional artificial intelligence methods and soft computing techniques. Our goal is to bring together scientists representing both approaches and various research communities.
期刊最新文献
Bending Path Understanding Based on Angle Projections in Field Environments Self-Organized Operational Neural Networks for The Detection of Atrial Fibrillation Interpreting Convolutional Layers in DNN Model Based on Time–Frequency Representation of Emotional Speech A Few-Shot Learning Approach for Covid-19 Diagnosis Using Quasi-Configured Topological Spaces Metrics for Assessing Generalization of Deep Reinforcement Learning in Parameterized Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1