{"title":"A two-stage e-commerce search matching model incorporating contrastive learning and course-based hard negative example sampling","authors":"Wenkai Zhang","doi":"10.1109/ICNLP58431.2023.00055","DOIUrl":null,"url":null,"abstract":"Text matching is a fundamental task in natural language processing. To address the short and ambiguous search statements in e-commerce domain, the complexity of headlines and the expensive manual annotation samples, this paper proposes a two-stage \"vectorized retrieval + refined ranking\" text matching model with a mixture of contrastive learning and course-based hard negative example sampling. By using supervised learning data augmentation, domain pre-training, comparative learning and hard case sampling to assist in ranking, this work achieves an MRR@10 value of 0.3890 in the test set of the 2022 \"Ali Lingjie\" E-Commerce Search Algorithm Competition, ranking second, demonstrating the effectiveness of the model.","PeriodicalId":53637,"journal":{"name":"Icon","volume":"211 1 1","pages":"263-267"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNLP58431.2023.00055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0
Abstract
Text matching is a fundamental task in natural language processing. To address the short and ambiguous search statements in e-commerce domain, the complexity of headlines and the expensive manual annotation samples, this paper proposes a two-stage "vectorized retrieval + refined ranking" text matching model with a mixture of contrastive learning and course-based hard negative example sampling. By using supervised learning data augmentation, domain pre-training, comparative learning and hard case sampling to assist in ranking, this work achieves an MRR@10 value of 0.3890 in the test set of the 2022 "Ali Lingjie" E-Commerce Search Algorithm Competition, ranking second, demonstrating the effectiveness of the model.