Empirical Comparison of Cross-Validation and Test Data on Internet Traffic Classification Methods

Oluranti Jonathan, N. Omoregbe, S. Misra
{"title":"Empirical Comparison of Cross-Validation and Test Data on Internet Traffic Classification Methods","authors":"Oluranti Jonathan, N. Omoregbe, S. Misra","doi":"10.1088/1742-6596/1299/1/012044","DOIUrl":null,"url":null,"abstract":"In this paper, we compare two validation methods that are used to estimate the performance of classification algorithms in a non-problem-specific knowledge scenario. One way to measure the performance of a classification algorithm is to determine its prediction error rate. However, this value cannot be calculated but estimated. In this work, we apply and compare two common methods used for estimation namely: test data and cross-validation. Precisely, we analyze and compare the statistical properties of the K-fold cross-validation and test data estimators of the prediction error rates of six classifiers namely; Naïve Bayes, KNN, Random Forest, SVM, J48, and OneR. From the study, the statistical property of repeated cross-validation tends to stabilize the prediction error estimation which in turn reduces the variance of the prediction error estimator when compared with test data. The NIMS dataset collected over a network was employed in the experimental study.","PeriodicalId":16821,"journal":{"name":"Journal of Physics: Conference Series","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Conference Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1742-6596/1299/1/012044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we compare two validation methods that are used to estimate the performance of classification algorithms in a non-problem-specific knowledge scenario. One way to measure the performance of a classification algorithm is to determine its prediction error rate. However, this value cannot be calculated but estimated. In this work, we apply and compare two common methods used for estimation namely: test data and cross-validation. Precisely, we analyze and compare the statistical properties of the K-fold cross-validation and test data estimators of the prediction error rates of six classifiers namely; Naïve Bayes, KNN, Random Forest, SVM, J48, and OneR. From the study, the statistical property of repeated cross-validation tends to stabilize the prediction error estimation which in turn reduces the variance of the prediction error estimator when compared with test data. The NIMS dataset collected over a network was employed in the experimental study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
互联网流量分类方法交叉验证与测试数据的实证比较
在本文中,我们比较了两种用于估计分类算法在非问题特定知识场景中的性能的验证方法。衡量分类算法性能的一种方法是确定其预测错误率。但是,这个值不能计算,只能估计。在这项工作中,我们应用并比较了两种常用的估计方法,即:测试数据和交叉验证。准确地说,我们分析和比较了K-fold交叉验证的统计特性,并测试了6个分类器的预测错误率的数据估计器,即;Naïve贝叶斯、KNN、随机森林、SVM、J48、OneR。研究表明,重复交叉验证的统计特性使预测误差估计趋于稳定,从而减小了预测误差估计量与试验数据的方差。实验研究采用网络上收集的NIMS数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊最新文献
Research and design of low-noise cooling fan for fuel cell vehicle Enhanced heat transfer technology for solar air heaters Comparison of thermo-catalytic and photo-assisted thermo-catalytic conversion of glucose to HMF with Cr-MOFs@ZrO2 Mechanical integrity analysis of caprock during the CO2 injection phase Numerical study of film cooling at the outlet of gas turbine exhaust
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1