Socioeconomic and Climatic Impacts of Photovoltaic Systems Operating High-Efficiency Irrigation Systems: A Case Study of the Government Subsidy Scheme for Climate-Smart Agriculture in Punjab, Pakistan
{"title":"Socioeconomic and Climatic Impacts of Photovoltaic Systems Operating High-Efficiency Irrigation Systems: A Case Study of the Government Subsidy Scheme for Climate-Smart Agriculture in Punjab, Pakistan","authors":"Faakhar Raza, M. Tamoor, S. Miran","doi":"10.3390/engproc2021012036","DOIUrl":null,"url":null,"abstract":"This paper presents the results of a field study conducted in the Punjab, Pakistan, to evaluate the socio-economic and climatic impact of Photovoltaic (PV) systems installed under government subsidy scheme for operating high efficiency irrigation systems (HEIS) i.e., drip and sprinkler irrigation systems. Agriculture provides livelihood to almost half of the rural population and recent energy crisis in the country has adversely affected the rural communities. Farmer’s dependence on fossil fuels has significantly increased for operating irrigation systems which has resulted in high costs of agriculture production. Government of Punjab has launched a subsidy scheme to install PV systems for operating efficient drip and sprinkler irrigation systems on cost sharing basis. Photovoltaic systems having a capacity of 17.30 megawatt, were installed to operate high efficiency irrigation systems at around twenty thousand acres under this subsidy project, that has resulted in an annual saving of 0.0066 billion liters of diesel. The average capacity of installed PV systems was 9.0 kilowatt, which matched the 7.50 horse power of installed water pumps. On average, the cost of a PV system per acre was calculated to be 0.000142 billion PKR, while the cost per kWp was calculated to be 0.000149 billion PKR. The research results show that the installation of photovoltaic systems has increased the adoption rate of high-efficiency irrigation systems, reduced carbon dioxide emissions, and reduced the high operating costs associated with diesel powered pump systems. The primary data about on-farm agriculture and irrigation practices used in this study were collected through in-depth farmer surveys, while the secondary data information came from reports, official documents and statistics issued by the government.","PeriodicalId":11748,"journal":{"name":"Engineering Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/engproc2021012036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper presents the results of a field study conducted in the Punjab, Pakistan, to evaluate the socio-economic and climatic impact of Photovoltaic (PV) systems installed under government subsidy scheme for operating high efficiency irrigation systems (HEIS) i.e., drip and sprinkler irrigation systems. Agriculture provides livelihood to almost half of the rural population and recent energy crisis in the country has adversely affected the rural communities. Farmer’s dependence on fossil fuels has significantly increased for operating irrigation systems which has resulted in high costs of agriculture production. Government of Punjab has launched a subsidy scheme to install PV systems for operating efficient drip and sprinkler irrigation systems on cost sharing basis. Photovoltaic systems having a capacity of 17.30 megawatt, were installed to operate high efficiency irrigation systems at around twenty thousand acres under this subsidy project, that has resulted in an annual saving of 0.0066 billion liters of diesel. The average capacity of installed PV systems was 9.0 kilowatt, which matched the 7.50 horse power of installed water pumps. On average, the cost of a PV system per acre was calculated to be 0.000142 billion PKR, while the cost per kWp was calculated to be 0.000149 billion PKR. The research results show that the installation of photovoltaic systems has increased the adoption rate of high-efficiency irrigation systems, reduced carbon dioxide emissions, and reduced the high operating costs associated with diesel powered pump systems. The primary data about on-farm agriculture and irrigation practices used in this study were collected through in-depth farmer surveys, while the secondary data information came from reports, official documents and statistics issued by the government.