Jianyong Li, Ge Gao, Lei Yang, Yanhong Liu, Hongnian Yu
{"title":"DEF-Net: A Dual-Encoder Fusion Network for Fundus Retinal Vessel Segmentation","authors":"Jianyong Li, Ge Gao, Lei Yang, Yanhong Liu, Hongnian Yu","doi":"10.3390/electronics11223810","DOIUrl":null,"url":null,"abstract":"The deterioration of numerous eye diseases is highly related to the fundus retinal structures, so the automatic retinal vessel segmentation serves as an essential stage for efficient detection of eye-related lesions in clinical practice. Segmentation methods based on encode-decode structures exhibit great potential in retinal vessel segmentation tasks, but have limited feature representation ability. In addition, they don’t effectively consider the information at multiple scales when performing feature fusion, resulting in low fusion efficiency. In this paper, a newly model, named DEF-Net, is designed to segment retinal vessels automatically, which consists of a dual-encoder unit and a decoder unit. Fused with recurrent network and convolution network, a dual-encoder unit is proposed, which builds a convolutional network branch to extract detailed features and a recurrent network branch to accumulate contextual features, and it could obtain richer features compared to the single convolution network structure. Furthermore, to exploit the useful information at multiple scales, a multi-scale fusion block used for facilitating feature fusion efficiency is designed. Extensive experiments have been undertaken to demonstrate the segmentation performance of our proposed DEF-Net.","PeriodicalId":11646,"journal":{"name":"Electronics","volume":"17 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/electronics11223810","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3
Abstract
The deterioration of numerous eye diseases is highly related to the fundus retinal structures, so the automatic retinal vessel segmentation serves as an essential stage for efficient detection of eye-related lesions in clinical practice. Segmentation methods based on encode-decode structures exhibit great potential in retinal vessel segmentation tasks, but have limited feature representation ability. In addition, they don’t effectively consider the information at multiple scales when performing feature fusion, resulting in low fusion efficiency. In this paper, a newly model, named DEF-Net, is designed to segment retinal vessels automatically, which consists of a dual-encoder unit and a decoder unit. Fused with recurrent network and convolution network, a dual-encoder unit is proposed, which builds a convolutional network branch to extract detailed features and a recurrent network branch to accumulate contextual features, and it could obtain richer features compared to the single convolution network structure. Furthermore, to exploit the useful information at multiple scales, a multi-scale fusion block used for facilitating feature fusion efficiency is designed. Extensive experiments have been undertaken to demonstrate the segmentation performance of our proposed DEF-Net.
ElectronicsComputer Science-Computer Networks and Communications
CiteScore
1.10
自引率
10.30%
发文量
3515
审稿时长
16.71 days
期刊介绍:
Electronics (ISSN 2079-9292; CODEN: ELECGJ) is an international, open access journal on the science of electronics and its applications published quarterly online by MDPI.