Bacterial Force on Nanopillars: Interaction at Single Cell

Jagriti Singh, Vaibhav Sharma, S. Chandorkar, P. Sen
{"title":"Bacterial Force on Nanopillars: Interaction at Single Cell","authors":"Jagriti Singh, Vaibhav Sharma, S. Chandorkar, P. Sen","doi":"10.1109/Transducers50396.2021.9495593","DOIUrl":null,"url":null,"abstract":"Despite extensive studies there are contradictory findings regarding effects of nano-topography on bacterial adherence and viability. Here, we report that bacteria have ability to locate nearest pillars, enabling itself to expand and attach, and pulling these pillars towards itself. Two types of nanopillars, namely, Straight pillars (SP) and Conical pillars (CP) were used to investigate the behavior of bacterial cell on surface nano topographies. We calculated that the force applied by the bacteria on these pillars is in the order of few hundred nano-newtons, and most importantly, the magnitude of the applied force depends on the pillar dimensions. Straight pillars are bent significantly compared to sharp-tipped conical pillars, suggesting higher overall mechanical stress in/throughout the bacterial membrane on straight pillars, leading to membrane rupture and ultimately cell death. In the case of bacterial membrane on conical pillars, severe localized stress generated in the membrane, near the regions where pillars contacted the membrane due to small cross-section of conical pillars, pierces the membrane (no bending of pillars) which causes cell death.","PeriodicalId":6814,"journal":{"name":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","volume":"73 1","pages":"1040-1043"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Transducers50396.2021.9495593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Despite extensive studies there are contradictory findings regarding effects of nano-topography on bacterial adherence and viability. Here, we report that bacteria have ability to locate nearest pillars, enabling itself to expand and attach, and pulling these pillars towards itself. Two types of nanopillars, namely, Straight pillars (SP) and Conical pillars (CP) were used to investigate the behavior of bacterial cell on surface nano topographies. We calculated that the force applied by the bacteria on these pillars is in the order of few hundred nano-newtons, and most importantly, the magnitude of the applied force depends on the pillar dimensions. Straight pillars are bent significantly compared to sharp-tipped conical pillars, suggesting higher overall mechanical stress in/throughout the bacterial membrane on straight pillars, leading to membrane rupture and ultimately cell death. In the case of bacterial membrane on conical pillars, severe localized stress generated in the membrane, near the regions where pillars contacted the membrane due to small cross-section of conical pillars, pierces the membrane (no bending of pillars) which causes cell death.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细菌对纳米柱的作用力:单细胞的相互作用
尽管进行了广泛的研究,但关于纳米形貌对细菌粘附和生存能力的影响,发现存在矛盾。在这里,我们报道细菌有能力找到最近的柱子,使自己能够扩张和附着,并将这些柱子拉向自己。采用直柱(SP)和锥形柱(CP)两种纳米柱,研究了细菌细胞在纳米表面的行为。我们计算出细菌施加在这些柱子上的力大约是几百纳米牛顿,最重要的是,施加的力的大小取决于柱子的尺寸。与尖锥柱相比,直柱弯曲明显,这表明直柱上细菌膜的整体机械应力更高,导致膜破裂,最终导致细胞死亡。在锥形柱上的细菌膜,由于锥形柱的截面小,在柱与膜接触的区域附近,膜上产生了严重的局部应力,刺穿膜(柱不弯曲),导致细胞死亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fabrication and Characterization of 3D Microelectrode Arrays (3D MEAS) with Tri-Modal (Electrical, Optical, and Microfluidic) Interrogation of Electrogenic Cell Constructs Consistency Evaluation on Preparation Methods of Optical Fiber Photoacoustic Probe CO2Gas Sensing By Cmos-Mems Scaln-Based Pyroelectric Detector Based on MID-IR Absorption Prospect of New AFM Probe Design Enabled by Stress Gradient Flexible Film Loudspeaker Based on Piezoelectric PZT/Si Ultra-Thin MEMS Chips
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1