Michal Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, Wojciech Jaśkowski
{"title":"ViZDoom: A Doom-based AI research platform for visual reinforcement learning","authors":"Michal Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, Wojciech Jaśkowski","doi":"10.1109/CIG.2016.7860433","DOIUrl":null,"url":null,"abstract":"The recent advances in deep neural networks have led to effective vision-based reinforcement learning methods that have been employed to obtain human-level controllers in Atari 2600 games from pixel data. Atari 2600 games, however, do not resemble real-world tasks since they involve non-realistic 2D environments and the third-person perspective. Here, we propose a novel test-bed platform for reinforcement learning research from raw visual information which employs the first-person perspective in a semi-realistic 3D world. The software, called ViZDoom, is based on the classical first-person shooter video game, Doom. It allows developing bots that play the game using the screen buffer. ViZDoom is lightweight, fast, and highly customizable via a convenient mechanism of user scenarios. In the experimental part, we test the environment by trying to learn bots for two scenarios: a basic move-and-shoot task and a more complex maze-navigation problem. Using convolutional deep neural networks with Q-learning and experience replay, for both scenarios, we were able to train competent bots, which exhibit human-like behaviors. The results confirm the utility of ViZDoom as an AI research platform and imply that visual reinforcement learning in 3D realistic first-person perspective environments is feasible.","PeriodicalId":6594,"journal":{"name":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","volume":"97 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"625","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2016.7860433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 625
Abstract
The recent advances in deep neural networks have led to effective vision-based reinforcement learning methods that have been employed to obtain human-level controllers in Atari 2600 games from pixel data. Atari 2600 games, however, do not resemble real-world tasks since they involve non-realistic 2D environments and the third-person perspective. Here, we propose a novel test-bed platform for reinforcement learning research from raw visual information which employs the first-person perspective in a semi-realistic 3D world. The software, called ViZDoom, is based on the classical first-person shooter video game, Doom. It allows developing bots that play the game using the screen buffer. ViZDoom is lightweight, fast, and highly customizable via a convenient mechanism of user scenarios. In the experimental part, we test the environment by trying to learn bots for two scenarios: a basic move-and-shoot task and a more complex maze-navigation problem. Using convolutional deep neural networks with Q-learning and experience replay, for both scenarios, we were able to train competent bots, which exhibit human-like behaviors. The results confirm the utility of ViZDoom as an AI research platform and imply that visual reinforcement learning in 3D realistic first-person perspective environments is feasible.