N. Ryskin, Roman A. Torgashov, A. Starodubov, A. Rozhnev, A. Serdobintsev, A. Pavlov, V. Galushka, D. Bessonov, G. Ulisse, V. Krozer
{"title":"Development of microfabricated planar slow-wave structures on dielectric substrates for miniaturized millimeter-band traveling-wave tubes","authors":"N. Ryskin, Roman A. Torgashov, A. Starodubov, A. Rozhnev, A. Serdobintsev, A. Pavlov, V. Galushka, D. Bessonov, G. Ulisse, V. Krozer","doi":"10.1116/6.0000716","DOIUrl":null,"url":null,"abstract":"We report the results of the design, simulation, fabrication, and cold-test measurements of millimeter-band 2D planar microstrip slow-wave structures (SWSs) on dielectric substrates. Such structures have a high slow-wave factor, which allows for low-voltage operation and reduction in the size and weight of the device. A low-cost and flexible fabrication technology based on magnetron sputtering and subsequent laser ablation has been developed and is reported in the paper. Microstrip meander-line SWS circuits at V-, W-, and D-bands have been fabricated and characterized. The fabrication of ring-bar planar SWSs by the photolithographic method is also discussed. Experimental measurement of S-parameters of the fabricated structures reveals good transmission properties. Return loss (S11) does not exceed −10 dB and attenuation is about 2 dB/cm in the V-band, 10 dB/cm in the W-band, and 8.5 dB/cm in the D-band.","PeriodicalId":17652,"journal":{"name":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","volume":"58 1","pages":"013204"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0000716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
We report the results of the design, simulation, fabrication, and cold-test measurements of millimeter-band 2D planar microstrip slow-wave structures (SWSs) on dielectric substrates. Such structures have a high slow-wave factor, which allows for low-voltage operation and reduction in the size and weight of the device. A low-cost and flexible fabrication technology based on magnetron sputtering and subsequent laser ablation has been developed and is reported in the paper. Microstrip meander-line SWS circuits at V-, W-, and D-bands have been fabricated and characterized. The fabrication of ring-bar planar SWSs by the photolithographic method is also discussed. Experimental measurement of S-parameters of the fabricated structures reveals good transmission properties. Return loss (S11) does not exceed −10 dB and attenuation is about 2 dB/cm in the V-band, 10 dB/cm in the W-band, and 8.5 dB/cm in the D-band.