SCC thermal model identification via advanced bias-compensated least-squares

R. Diversi, Andrea Bartolini, A. Tilli, Francesco Beneventi, L. Benini
{"title":"SCC thermal model identification via advanced bias-compensated least-squares","authors":"R. Diversi, Andrea Bartolini, A. Tilli, Francesco Beneventi, L. Benini","doi":"10.7873/DATE.2013.060","DOIUrl":null,"url":null,"abstract":"Compact thermal models and modeling strategies are today a cornerstone for advanced power management to counteract the emerging thermal crisis for many-core systems-on-chip. System identification techniques allow to extract models directly from the target device thermal response. Unfortunately, standard Least Squares techniques cannot effectively cope with both model approximation and measurement noise typical of real systems. In this work, we present a novel distributed identification strategy capable of coping with real-life temperature sensor noise and effectively extracting a set of low-order predictive thermal models for the tiles of Intel's Single-chip-Cloud-Computer (SCC) many-core prototype.","PeriodicalId":6310,"journal":{"name":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"80 1","pages":"230-235"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE.2013.060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Compact thermal models and modeling strategies are today a cornerstone for advanced power management to counteract the emerging thermal crisis for many-core systems-on-chip. System identification techniques allow to extract models directly from the target device thermal response. Unfortunately, standard Least Squares techniques cannot effectively cope with both model approximation and measurement noise typical of real systems. In this work, we present a novel distributed identification strategy capable of coping with real-life temperature sensor noise and effectively extracting a set of low-order predictive thermal models for the tiles of Intel's Single-chip-Cloud-Computer (SCC) many-core prototype.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于先进偏差补偿最小二乘的SCC热模型辨识
紧凑的热模型和建模策略是当今先进电源管理的基石,以抵消多核系统芯片上出现的热危机。系统识别技术允许直接从目标器件热响应中提取模型。不幸的是,标准最小二乘技术不能有效地处理模型逼近和实际系统典型的测量噪声。在这项工作中,我们提出了一种新的分布式识别策略,能够应对现实生活中的温度传感器噪声,并有效地提取一组低阶预测热模型,用于英特尔的单芯片云计算机(SCC)多核原型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An enhanced double-TSV scheme for defect tolerance in 3D-IC A sub-µA power management circuit in 0.18µm CMOS for energy harvesters Variation-tolerant OpenMP tasking on tightly-coupled processor clusters Sufficient real-time analysis for an engine control unit with constant angular velocities A Critical-Section-Level timing synchronization approach for deterministic multi-core instruction-set simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1