Shear Thickening Fluids Comparative Analysis Composed of Silica Nanoparticles in Polyethylene Glycol and Starch in Water

IF 3.9 Q2 NANOSCIENCE & NANOTECHNOLOGY Journal of Nanotechnology Pub Date : 2020-12-07 DOI:10.1155/2020/8839185
R. Mankarious, M. Radwan
{"title":"Shear Thickening Fluids Comparative Analysis Composed of Silica Nanoparticles in Polyethylene Glycol and Starch in Water","authors":"R. Mankarious, M. Radwan","doi":"10.1155/2020/8839185","DOIUrl":null,"url":null,"abstract":"Shear thickening fluid (STF) occurs in dispersions of highly condensed colloid particles and is categorized as a non-Newtonian fluid whose viscosity increases under shear loading which makes them beneficial in protective and impact resistance applications. The aim of this study is to synthesis two different STFs and characterize their microstructural properties to provide a data base for comparing the final macrobehavior of the two fluids under mechanical testing. Therefore, fumed silica and polyethylene glycol STF and starch with water STF-based dispersions were prepared. The particle size, zeta potential, SEM micrographs, and rheological analysis were performed for each type of STF. The effect of filler concentration was observed by using 10–30 weight% filling material. The rheological properties of STFs show higher viscosity measurements at same shear rates for starch/water STF than silica/PEG with maximum viscosity reaching 523.6 Pa s and 178.9 Pa s, respectively. Larger starch particle size over silica recorded as 303.7 nm and 16.49 nm, respectively, and zeta potential analysis recorded particle electrostatic charges as 22.6 mV and 12.8 mV, respectively, leading to more dispersion stability and obvious thickening effect at higher particle concentration leading to greater jump in viscosity at sudden shear rate. The results indicate the capability of trying more protective applications with more flexibility and less thickness when STF is implemented and a good database for the fluids to choose from according to their behavior.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":"39 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/8839185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 8

Abstract

Shear thickening fluid (STF) occurs in dispersions of highly condensed colloid particles and is categorized as a non-Newtonian fluid whose viscosity increases under shear loading which makes them beneficial in protective and impact resistance applications. The aim of this study is to synthesis two different STFs and characterize their microstructural properties to provide a data base for comparing the final macrobehavior of the two fluids under mechanical testing. Therefore, fumed silica and polyethylene glycol STF and starch with water STF-based dispersions were prepared. The particle size, zeta potential, SEM micrographs, and rheological analysis were performed for each type of STF. The effect of filler concentration was observed by using 10–30 weight% filling material. The rheological properties of STFs show higher viscosity measurements at same shear rates for starch/water STF than silica/PEG with maximum viscosity reaching 523.6 Pa s and 178.9 Pa s, respectively. Larger starch particle size over silica recorded as 303.7 nm and 16.49 nm, respectively, and zeta potential analysis recorded particle electrostatic charges as 22.6 mV and 12.8 mV, respectively, leading to more dispersion stability and obvious thickening effect at higher particle concentration leading to greater jump in viscosity at sudden shear rate. The results indicate the capability of trying more protective applications with more flexibility and less thickness when STF is implemented and a good database for the fluids to choose from according to their behavior.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二氧化硅纳米颗粒在聚乙二醇中与淀粉在水中组成的剪切增稠流体的对比分析
剪切增稠流体(STF)发生在高度凝聚的胶体颗粒的分散体中,被分类为非牛顿流体,其粘度在剪切载荷下增加,这使得它们有利于保护和抗冲击应用。本研究的目的是合成两种不同的STFs并表征其微观结构特性,为比较两种流体在力学测试中的最终宏观行为提供数据基础。因此,制备了气相二氧化硅和聚乙二醇STF以及淀粉与水STF基分散体。对每种STF进行粒径、zeta电位、SEM显微照片和流变学分析。采用10 ~ 30 %重量的填料,观察填料浓度的影响。在相同剪切速率下,淀粉/水STF的粘度测量值高于二氧化硅/聚乙二醇STF,最大粘度分别达到523.6 Pa s和178.9 Pa s。相比于二氧化硅,淀粉粒径更大,分别为303.7 nm和16.49 nm, zeta电位分析记录的颗粒静电荷分别为22.6 mV和12.8 mV,在高颗粒浓度下分散稳定性更好,增稠效果明显,在突然剪切速率下粘度跳变更大。结果表明,当采用STF时,可以尝试更多具有更大灵活性和更小厚度的保护应用,并且可以根据流体的行为选择良好的数据库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanotechnology
Journal of Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
5.50
自引率
2.40%
发文量
25
审稿时长
13 weeks
期刊最新文献
Enhancement of Optical Properties and Stability in CsPbBr3 Using CQD and TOP Doping for Solar Cell Applications Boosting LiMn2O4 Diffusion Coefficients and Stability via Fe/Mg Doping and MWCNT Synergistically Modulating Microstructure Phytosynthesized Nanoparticles as Novel Antifungal Agent for Sustainable Agriculture: A Mechanistic Approach, Current Advances, and Future Directions Reduction of SO2 to Elemental Sulfur in Flue Gas Using Copper-Alumina Catalysts Unlocking the Potential of NiSO4·6H2O/NaOCl/NaOH Catalytic System: Insights into Nickel Peroxide as an Intermediate for Benzonitrile Synthesis in Water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1