Preserving local densities in low-dimensional embeddings

ArXiv Pub Date : 2023-01-31 DOI:10.48550/arXiv.2301.13732
Jonas Fischer, R. Burkholz, Jilles Vreeken
{"title":"Preserving local densities in low-dimensional embeddings","authors":"Jonas Fischer, R. Burkholz, Jilles Vreeken","doi":"10.48550/arXiv.2301.13732","DOIUrl":null,"url":null,"abstract":"Low-dimensional embeddings and visualizations are an indispensable tool for analysis of high-dimensional data. State-of-the-art methods, such as T SNE and UMAP, excel in unveiling local structures hidden in high-dimensional data and are therefore routinely applied in standard analysis pipelines in biology. We show, however, that these methods fail to reconstruct local properties, such as relative differences in densities (Fig. 1) and that apparent differences in cluster size can arise from computational artifact caused by differing sample sizes (Fig. 2). Providing a theoretical analysis of this issue, we then suggest DT SNE, which approximately conserves local densities. In an extensive study on synthetic benchmark and real world data comparing against five state-of-the-art methods, we empirically show that DT - SNE provides similar global reconstruction, but yields much more accurate depictions of local distances and relative densities.","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2301.13732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Low-dimensional embeddings and visualizations are an indispensable tool for analysis of high-dimensional data. State-of-the-art methods, such as T SNE and UMAP, excel in unveiling local structures hidden in high-dimensional data and are therefore routinely applied in standard analysis pipelines in biology. We show, however, that these methods fail to reconstruct local properties, such as relative differences in densities (Fig. 1) and that apparent differences in cluster size can arise from computational artifact caused by differing sample sizes (Fig. 2). Providing a theoretical analysis of this issue, we then suggest DT SNE, which approximately conserves local densities. In an extensive study on synthetic benchmark and real world data comparing against five state-of-the-art methods, we empirically show that DT - SNE provides similar global reconstruction, but yields much more accurate depictions of local distances and relative densities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在低维嵌入中保持局部密度
低维嵌入和可视化是分析高维数据不可或缺的工具。最先进的方法,如tsne和UMAP,擅长揭示隐藏在高维数据中的局部结构,因此经常应用于生物学的标准分析管道。然而,我们发现,这些方法无法重建局部属性,例如密度的相对差异(图1),并且由于不同样本量引起的计算伪影可能导致簇大小的明显差异(图2)。我们对这一问题进行了理论分析,然后提出了DT SNE,它近似地保留了局部密度。在对合成基准和现实世界数据的广泛研究中,与五种最先进的方法进行了比较,我们经验地表明,DT - SNE提供了类似的全局重建,但产生了更准确的局部距离和相对密度描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
Governance of religious diversity in Western Europe
IF 1.3 2区 社会学EthnicitiesPub Date : 2019-03-09 DOI: 10.1177/1468796819832342
Erdem Dikici
Local governance of religious diversity in Southern Europe
IF 0 The Interfaith MovementPub Date : 2019-09-05 DOI: 10.4324/9780429467769-7
Mar Griera, M. Giorda, Valeria Fabretti
Religious nationalism and the dynamics of religious diversity governance in post-communist Eastern Europe
IF 0 2区 社会学EthnicitiesPub Date : 2023-10-19 DOI: 10.1177/14687968231207975
Ani Sarkissian
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RNA-FrameFlow: Flow Matching for de novo 3D RNA Backbone Design. Inference for Log-Gaussian Cox Point Processes using Bayesian Deep Learning: Application to Human Oral Microbiome Image Data. Self-Supervised Z-Slice Augmentation for 3D Bio-Imaging via Knowledge Distillation. Predictive Strategies for the Control of Complex Motor Skills: Recent Insights into Individual and Joint Actions. A Workflow to Create a High-Quality Protein-Ligand Binding Dataset for Training, Validation, and Prediction Tasks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1