Wavelet denoising technique for high-resolution CTD data. Characterization of turbulent oceanic flow

J. Piera, R. Quesada, A. Manuel-Lazaro, R. J. Del, S. Shariat Panahi, G. Olivar
{"title":"Wavelet denoising technique for high-resolution CTD data. Characterization of turbulent oceanic flow","authors":"J. Piera, R. Quesada, A. Manuel-Lazaro, R. J. Del, S. Shariat Panahi, G. Olivar","doi":"10.1109/ICSENS.2004.1426464","DOIUrl":null,"url":null,"abstract":"The analysis of high-resolution CTD vertical profiles (conductivity, temperature and depth) is a common method for characterizing environmental turbulent fluid dynamics. One of the objectives in analyzing high-resolution CTD profiles is to identify turbulent regions (patches) within the flow. Due to the instrumental noise of CTD measurements, the previous methods for turbulent patch identification, reported in the literature, are usually unable to identify patches at low-density gradient. Here we proposed a new method that significantly improves patch detection at low-density gradients. The method is based on a wavelet-denoising procedure and a theoretical analysis of the error in data obtained from the CTD sensors. The high percentage of validating patches, obtained in numerical and field tests, indicates that the method is a powerful tool for fluid dynamics characterization, and can be applied in a wide range of environmental monitoring applications.","PeriodicalId":20476,"journal":{"name":"Proceedings of IEEE Sensors, 2004.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE Sensors, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2004.1426464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The analysis of high-resolution CTD vertical profiles (conductivity, temperature and depth) is a common method for characterizing environmental turbulent fluid dynamics. One of the objectives in analyzing high-resolution CTD profiles is to identify turbulent regions (patches) within the flow. Due to the instrumental noise of CTD measurements, the previous methods for turbulent patch identification, reported in the literature, are usually unable to identify patches at low-density gradient. Here we proposed a new method that significantly improves patch detection at low-density gradients. The method is based on a wavelet-denoising procedure and a theoretical analysis of the error in data obtained from the CTD sensors. The high percentage of validating patches, obtained in numerical and field tests, indicates that the method is a powerful tool for fluid dynamics characterization, and can be applied in a wide range of environmental monitoring applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高分辨率CTD数据的小波去噪技术。紊流海洋流动的表征
分析高分辨率连续油管垂直剖面(电导率、温度和深度)是表征环境湍流流体动力学的常用方法。分析高分辨率CTD剖面的目标之一是识别流动中的湍流区域(斑块)。由于CTD测量的仪器噪声,以往文献报道的湍流斑块识别方法通常无法识别低密度梯度下的斑块。在此,我们提出了一种新的方法,可以显著提高低密度梯度下的斑块检测。该方法基于小波去噪过程和对CTD传感器数据误差的理论分析。在数值和现场试验中获得的高百分比的验证补丁表明,该方法是流体动力学表征的有力工具,可以广泛应用于环境监测应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of non-invasive optical transcutaneous pCO/sub 2/ gas sensor and analytic equipment Implantable flexible wireless pressure sensor module Surface quad beam polymer optical accelerometer Fabrication and initial characterisation results of a micromachined biomimetic strain sensor inspired from the Campaniform sensillum of insects Wireless multi-channel sensor for neurodynamic studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1