A. Crespo-Yepes, J. Martín-Martínez, V. Iglesias, R. Rodríguez, M. Porti, M. Nafría, X. Aymerich, M. Lanza
{"title":"Nanoscale and device level analysis of the resistive switching phenomenon in ultra-thin high-k gate dielectrics","authors":"A. Crespo-Yepes, J. Martín-Martínez, V. Iglesias, R. Rodríguez, M. Porti, M. Nafría, X. Aymerich, M. Lanza","doi":"10.1109/CDE.2013.6481397","DOIUrl":null,"url":null,"abstract":"Some high-k dielectric materials show two interchangeable conductivity states (a High Resistive State, HRS, and Low Resistive State, LRS) in what is known as Resistive Switching (RS), being the basis of ReRAMs. In this work, the Resistive Switching (RS) phenomenon is studied on ultrathin Hf based high-k dielectrics at the nanoscale, by using the conductive atomic force microscopy (CAFM), and at device level. The CAFM allows analysing the local dielectric properties of the RS phenomenon. At device level, the temperature dependence of the RS-related gate currents during the HRS and LRS has been studied in MOSFETs.","PeriodicalId":6614,"journal":{"name":"2013 Spanish Conference on Electron Devices","volume":"62 1","pages":"281-284"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Spanish Conference on Electron Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDE.2013.6481397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Some high-k dielectric materials show two interchangeable conductivity states (a High Resistive State, HRS, and Low Resistive State, LRS) in what is known as Resistive Switching (RS), being the basis of ReRAMs. In this work, the Resistive Switching (RS) phenomenon is studied on ultrathin Hf based high-k dielectrics at the nanoscale, by using the conductive atomic force microscopy (CAFM), and at device level. The CAFM allows analysing the local dielectric properties of the RS phenomenon. At device level, the temperature dependence of the RS-related gate currents during the HRS and LRS has been studied in MOSFETs.