Automatically Finding Bugs in a Commercial Cyber-Physical System Development Tool Chain With SLforge

Shafiul Azam Chowdhury, Soumik Mohian, Sidharth Mehra, Siddhant Gawsane, Taylor T. Johnson, Christoph Csallner
{"title":"Automatically Finding Bugs in a Commercial Cyber-Physical System Development Tool Chain With SLforge","authors":"Shafiul Azam Chowdhury, Soumik Mohian, Sidharth Mehra, Siddhant Gawsane, Taylor T. Johnson, Christoph Csallner","doi":"10.1145/3180155.3180231","DOIUrl":null,"url":null,"abstract":"Cyber-physical system (CPS) development tool chains are widely used in the design, simulation, and verification of CPS data-flow models. Commercial CPS tool chains such as MathWorks' Simulink generate artifacts such as code binaries that are widely deployed in embedded systems. Hardening such tool chains by testing is crucial since formally verifying them is currently infeasible. Existing differential testing frameworks such as CyFuzz can not generate models rich in language features, partly because these tool chains do not leverage the available informal Simulink specifications. Furthermore, no study of existing Simulink models is available, which could guide CyFuzz to generate realistic models. To address these shortcomings, we created the first large collection of public Simulink models and used the collected models' properties to guide random model generation. To further guide model generation we systematically collected semi-formal Simulink specifications. In our experiments on several hundred models, the resulting SLforge generator was more effective and efficient than the state-of-the-art tool CyFuzz. SLforge also found 8 new confirmed bugs in Simulink.","PeriodicalId":6560,"journal":{"name":"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)","volume":"45 1","pages":"981-992"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3180155.3180231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

Cyber-physical system (CPS) development tool chains are widely used in the design, simulation, and verification of CPS data-flow models. Commercial CPS tool chains such as MathWorks' Simulink generate artifacts such as code binaries that are widely deployed in embedded systems. Hardening such tool chains by testing is crucial since formally verifying them is currently infeasible. Existing differential testing frameworks such as CyFuzz can not generate models rich in language features, partly because these tool chains do not leverage the available informal Simulink specifications. Furthermore, no study of existing Simulink models is available, which could guide CyFuzz to generate realistic models. To address these shortcomings, we created the first large collection of public Simulink models and used the collected models' properties to guide random model generation. To further guide model generation we systematically collected semi-formal Simulink specifications. In our experiments on several hundred models, the resulting SLforge generator was more effective and efficient than the state-of-the-art tool CyFuzz. SLforge also found 8 new confirmed bugs in Simulink.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用SLforge自动查找商业网络物理系统开发工具链中的错误
信息物理系统(CPS)开发工具链广泛应用于CPS数据流模型的设计、仿真和验证。商业CPS工具链,如MathWorks的Simulink,可以生成广泛部署在嵌入式系统中的二进制代码等工件。通过测试来强化这些工具链是至关重要的,因为正式验证它们目前是不可行的。现有的差异测试框架,如CyFuzz,不能生成语言特性丰富的模型,部分原因是这些工具链没有利用可用的非正式Simulink规范。此外,没有对现有Simulink模型的研究,这可以指导CyFuzz生成逼真的模型。为了解决这些缺点,我们创建了第一个大型公共Simulink模型集合,并使用收集到的模型属性来指导随机模型生成。为了进一步指导模型生成,我们系统地收集了半形式化的Simulink规范。在我们对几百个模型的实验中,所得到的SLforge生成器比最先进的工具CyFuzz更有效和高效。SLforge还在Simulink中发现了8个新的确认bug。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Launch-Mode-Aware Context-Sensitive Activity Transition Analysis A Combinatorial Approach for Exposing Off-Nominal Behaviors Perses: Syntax-Guided Program Reduction Fine-Grained Test Minimization From UI Design Image to GUI Skeleton: A Neural Machine Translator to Bootstrap Mobile GUI Implementation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1