Aleksander Blyablyas, S. Vershinin, Petr Nikolaevich Afanasiev, A. Mingazov, R. F. Akhmetgareev
{"title":"Comprehensive Assessment and Targeted Approach to the Implementation of the Gas-Lift Method of Operation on the Yamal Peninsula Novy Port Field","authors":"Aleksander Blyablyas, S. Vershinin, Petr Nikolaevich Afanasiev, A. Mingazov, R. F. Akhmetgareev","doi":"10.2118/206569-ms","DOIUrl":null,"url":null,"abstract":"\n As geological environment becomes more complicated, specifics of oil fields with high gas content more demanding, and the Company's requirements for assets development efficiency more stringent, new challenges arise that require application of high-tech approaches and new tools to solve the tasks set. The era of \"easy\" oil is far behind, and there are no \"simple\" tasks left, so the key goal of oil companies now is to radically improve efficiency of existing \"difficult\" fields including development of gas condensate reservoirs and oil rims.\n The interest in development of new approaches to improve efficiency of the Novoportovskoye field is caused by the huge potential of the asset. Despite the fact that the field was discovered back in 1964, its remaining reserves are estimated at more than 250 million tons of oil and gas condensate and more than 270 billion cubic meters of natural gas, which are concentrated in five reservoirs. The Novoportovskoye field is the northernmost and largest on the Yamal Peninsula, but the complexity of its development and operation is caused not so much by geography and the lack of transport infrastructure but by the presence of a gas cap, low reservoir permeability, the occurrence of underlying water, and high gas content in produced reservoir fluid.\n The high gas content complicates the production process. The main method of operation in the existing fields of the Yamal Peninsula is artificial lift by electric submersible pumps (ESP) on rental basis. Given the remoteness and isolation of the Arctic region, the high cost of equipment rental, and the low efficiency of ESPs in liquids with high content of dissolved gas, it is only fair to ask a question of whether there is a tool that may allow us to predict operation parameters for different lift methods.\n The existing models and tools intended to assess behavior of the field are not good enough to fully predict gas breakthrough rates, optimize well operation parameters in case of short-term production forecasting, or select the optimal lift method.\n In this paper, we described application of an integrated modeling process for a targeted assessment of well operation parameters at the Novoportovskoye field. Also, in the framework of this paper, we performed a technical and economic estimation of the options under consideration, and formulated some recommendations to improve efficiency of development and operation of the field under the impact of the existing complicating factors.","PeriodicalId":11177,"journal":{"name":"Day 4 Fri, October 15, 2021","volume":"75 9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Fri, October 15, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/206569-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
As geological environment becomes more complicated, specifics of oil fields with high gas content more demanding, and the Company's requirements for assets development efficiency more stringent, new challenges arise that require application of high-tech approaches and new tools to solve the tasks set. The era of "easy" oil is far behind, and there are no "simple" tasks left, so the key goal of oil companies now is to radically improve efficiency of existing "difficult" fields including development of gas condensate reservoirs and oil rims.
The interest in development of new approaches to improve efficiency of the Novoportovskoye field is caused by the huge potential of the asset. Despite the fact that the field was discovered back in 1964, its remaining reserves are estimated at more than 250 million tons of oil and gas condensate and more than 270 billion cubic meters of natural gas, which are concentrated in five reservoirs. The Novoportovskoye field is the northernmost and largest on the Yamal Peninsula, but the complexity of its development and operation is caused not so much by geography and the lack of transport infrastructure but by the presence of a gas cap, low reservoir permeability, the occurrence of underlying water, and high gas content in produced reservoir fluid.
The high gas content complicates the production process. The main method of operation in the existing fields of the Yamal Peninsula is artificial lift by electric submersible pumps (ESP) on rental basis. Given the remoteness and isolation of the Arctic region, the high cost of equipment rental, and the low efficiency of ESPs in liquids with high content of dissolved gas, it is only fair to ask a question of whether there is a tool that may allow us to predict operation parameters for different lift methods.
The existing models and tools intended to assess behavior of the field are not good enough to fully predict gas breakthrough rates, optimize well operation parameters in case of short-term production forecasting, or select the optimal lift method.
In this paper, we described application of an integrated modeling process for a targeted assessment of well operation parameters at the Novoportovskoye field. Also, in the framework of this paper, we performed a technical and economic estimation of the options under consideration, and formulated some recommendations to improve efficiency of development and operation of the field under the impact of the existing complicating factors.