Verification of the Reduction of the Copper Loss by the Thin Coil Structure for Induction Cookers

M. Hataya, Koki Kamaeguchi, E. Hiraki, K. Umetani, T. Hirokawa, M. Imai, H. Sadakata
{"title":"Verification of the Reduction of the Copper Loss by the Thin Coil Structure for Induction Cookers","authors":"M. Hataya, Koki Kamaeguchi, E. Hiraki, K. Umetani, T. Hirokawa, M. Imai, H. Sadakata","doi":"10.23919/IPEC.2018.8507826","DOIUrl":null,"url":null,"abstract":"Litz wire is commonly employed as the heating coil of induction cookers. In order to realize further low cost and profile, the solid wire with simple construction and high space factor is required. However, the solid wire is may suffer from the large copper loss increased by the skin and proximity effect. Then, the previous study proposed the novel coil structure, which can suppress these effects, only by the FEM simulation. Therefore, the purpose of this paper is to verify this structure experimentally in comparison with the Litz wire coil. The result revealed that the proposed structure can have similar AC resistance and the similar height with the same surface area and the same number of turns. Moreover, the experimental result showed a possibility to further height reduction by optimization of the magnetic and winding isolation design. Consequently, the experiment supported practical effectiveness of the proposed structure for induction heating.","PeriodicalId":6610,"journal":{"name":"2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia)","volume":"1 1","pages":"410-415"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IPEC.2018.8507826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Litz wire is commonly employed as the heating coil of induction cookers. In order to realize further low cost and profile, the solid wire with simple construction and high space factor is required. However, the solid wire is may suffer from the large copper loss increased by the skin and proximity effect. Then, the previous study proposed the novel coil structure, which can suppress these effects, only by the FEM simulation. Therefore, the purpose of this paper is to verify this structure experimentally in comparison with the Litz wire coil. The result revealed that the proposed structure can have similar AC resistance and the similar height with the same surface area and the same number of turns. Moreover, the experimental result showed a possibility to further height reduction by optimization of the magnetic and winding isolation design. Consequently, the experiment supported practical effectiveness of the proposed structure for induction heating.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电磁炉用薄线圈结构降低铜损耗的验证
利兹丝通常用作电磁炉的加热线圈。为了进一步实现低成本、低外形,需要结构简单、空间系数高的实心线材。然而,实心导线可能会遭受较大的铜损耗增加的皮肤和接近效应。然后,先前的研究仅通过有限元模拟提出了能够抑制这些影响的新型线圈结构。因此,本文的目的是通过实验来验证这种结构,并与利兹线圈进行比较。结果表明,在相同的表面积和相同的匝数下,所提出的结构可以具有相似的交流电阻和相似的高度。此外,实验结果表明,通过优化磁隔离和绕组隔离设计,可以进一步降低高度。因此,实验支持了所提出的感应加热结构的实际有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flying Capacitor Resonant Pole Inverter with Direct Inductor Current Feedback Comparative Study of Single-Phase Fundamental Component Frequency Estimation Schemes under Time-varying Harmonic Distortion Operation Magnet Arrangement suitable for Large Air Gap Length in Linear PM Vernier Motor Fall Prevention and Vibration Suppression of Wheelchair Using Rider Motion State New Module with Isolated Half Bridge or Isolated Full Bridge for Modular Medium voltage converter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1