{"title":"Low-frequency noise in contact and channel regions of ambipolar InAs nanowire transistors","authors":"C. Delker, Yunlong Zi, Chen Yang, D. Janes","doi":"10.1109/DRC.2012.6257046","DOIUrl":null,"url":null,"abstract":"Semiconductor nanowires are promising candidates for nanoelectronic applications such as high-speed electronics, chemical sensors, and transparent electronics. However, practical application of these devices is hindered by the excessive levels of low-frequency (1/f) noise. The general physical model of 1/f noise stems from carrier interactions with the surface oxide along the channel, but the problem is exacerbated in nanowires because of their high surface-to-volume ratio. However, other mechanisms may also contribute to carrier fluctuations leading to higher levels of noise, such as fluctuations in the metal-semiconductor source and drain contacts. Understanding the physics and contributions from the different regions is key to optimizing noise in nanowire devices, but few studies have distinguished between these mechanisms.","PeriodicalId":6808,"journal":{"name":"70th Device Research Conference","volume":"21 1","pages":"189-190"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"70th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2012.6257046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Semiconductor nanowires are promising candidates for nanoelectronic applications such as high-speed electronics, chemical sensors, and transparent electronics. However, practical application of these devices is hindered by the excessive levels of low-frequency (1/f) noise. The general physical model of 1/f noise stems from carrier interactions with the surface oxide along the channel, but the problem is exacerbated in nanowires because of their high surface-to-volume ratio. However, other mechanisms may also contribute to carrier fluctuations leading to higher levels of noise, such as fluctuations in the metal-semiconductor source and drain contacts. Understanding the physics and contributions from the different regions is key to optimizing noise in nanowire devices, but few studies have distinguished between these mechanisms.