Nabraj Sapkota, Bijaya Thapa, YouJung Lee, Taeho Kim, Erica F. Bisson, Lubdha M. Shah, John W. Rose, Eun-Kee Jeong
{"title":"Eight-channel decoupled array for cervical spinal cord imaging at 3T: six-channel posterior and two-channel anterior array coil","authors":"Nabraj Sapkota, Bijaya Thapa, YouJung Lee, Taeho Kim, Erica F. Bisson, Lubdha M. Shah, John W. Rose, Eun-Kee Jeong","doi":"10.1002/cmr.b.21325","DOIUrl":null,"url":null,"abstract":"<p>The purpose of this study was to develop a dedicated high signal-to-noise ratio (SNR) radio frequency coil for cervical spinal cord (CSC) imaging without using the preamp decoupling technique. A novel eight-channel CSC array was constructed using butterfly, loop (circular), and rectangular elements. The adjacent elements were decoupled by the critical geometrical overlapping, and most non-adjacent elements were decoupled using the loop and butterfly elements. The performance of the proposed CSC coil was compared with the performance of the standard manufacturer's coil (Siemens' head, neck, and spine array) at 3T MRI system in <i>T</i><sub>2</sub>-weighted images, diffusion tensor images, and ultrahigh-<i>b</i> diffusion-weighted images. In <i>T</i><sub>2</sub>-weighted images, the SNR improvement of the eight-channel CSC coil was 1.4–2.0 times over the manufacturer's coil at the different levels of the CSC vertebrae. Higher contrast between white matter and gray matter was observed in the diffusion-weighted (<i>b</i> = 500 s/mm<sup>2</sup>) images and the fractional anisotropy maps obtained using the eight-channel CSC coil compared with the manufacturer's coil. The eight-channel CSC coil yielded 2.0 times higher SNR compared with the manufacturer's coil from the white matter region of the ultrahigh-<i>b</i> (<i>b</i> = 7348 s/mm<sup>2</sup>) radial diffusion-weighted images.</p>","PeriodicalId":50623,"journal":{"name":"Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering","volume":"46B 2","pages":"90-99"},"PeriodicalIF":0.9000,"publicationDate":"2016-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmr.b.21325","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmr.b.21325","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 5
Abstract
The purpose of this study was to develop a dedicated high signal-to-noise ratio (SNR) radio frequency coil for cervical spinal cord (CSC) imaging without using the preamp decoupling technique. A novel eight-channel CSC array was constructed using butterfly, loop (circular), and rectangular elements. The adjacent elements were decoupled by the critical geometrical overlapping, and most non-adjacent elements were decoupled using the loop and butterfly elements. The performance of the proposed CSC coil was compared with the performance of the standard manufacturer's coil (Siemens' head, neck, and spine array) at 3T MRI system in T2-weighted images, diffusion tensor images, and ultrahigh-b diffusion-weighted images. In T2-weighted images, the SNR improvement of the eight-channel CSC coil was 1.4–2.0 times over the manufacturer's coil at the different levels of the CSC vertebrae. Higher contrast between white matter and gray matter was observed in the diffusion-weighted (b = 500 s/mm2) images and the fractional anisotropy maps obtained using the eight-channel CSC coil compared with the manufacturer's coil. The eight-channel CSC coil yielded 2.0 times higher SNR compared with the manufacturer's coil from the white matter region of the ultrahigh-b (b = 7348 s/mm2) radial diffusion-weighted images.
期刊介绍:
Concepts in Magnetic Resonance Part B brings together engineers and physicists involved in the design and development of hardware and software employed in magnetic resonance techniques. The journal welcomes contributions predominantly from the fields of magnetic resonance imaging (MRI), nuclear magnetic resonance (NMR), and electron paramagnetic resonance (EPR), but also encourages submissions relating to less common magnetic resonance imaging and analytical methods.
Contributors come from both academia and industry, to report the latest advancements in the development of instrumentation and computer programming to underpin medical, non-medical, and analytical magnetic resonance techniques.