{"title":"Embedded self-circulation of liquid fuel for a micro direct methanol fuel cell","authors":"D. D. Meng, C. Kim","doi":"10.1109/MEMSYS.2007.4433020","DOIUrl":null,"url":null,"abstract":"This paper introduces a micro direct methanol fuel cell (muDMFC) with an embedded self-pumping mechanism to deliver liquid fuel. The fuel is propelled by the CO2 bubbles generated by the fuel-cell electrochemical reaction, and the bubbles are removed from the system during the self-pumping process. Furthermore, the pumping rate is self- regulated by the reaction, i.e., by the electric load. By eliminating the need for a pump and gas/liquid separator, our design allows much simpler fuel-cell systems, which is especially beneficial for miniaturization. Although we test with muDMFC in this paper, the mechanism applies to other membrane electrode assembly (MEA)-based fuel cells with organic liquid fuels as well.","PeriodicalId":6388,"journal":{"name":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"64 1","pages":"85-88"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2007.4433020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
This paper introduces a micro direct methanol fuel cell (muDMFC) with an embedded self-pumping mechanism to deliver liquid fuel. The fuel is propelled by the CO2 bubbles generated by the fuel-cell electrochemical reaction, and the bubbles are removed from the system during the self-pumping process. Furthermore, the pumping rate is self- regulated by the reaction, i.e., by the electric load. By eliminating the need for a pump and gas/liquid separator, our design allows much simpler fuel-cell systems, which is especially beneficial for miniaturization. Although we test with muDMFC in this paper, the mechanism applies to other membrane electrode assembly (MEA)-based fuel cells with organic liquid fuels as well.