{"title":"Plasma doping (PLAD) for advanced memory device manufacturing","authors":"S. Qin","doi":"10.1109/IIT.2014.6940017","DOIUrl":null,"url":null,"abstract":"PLAD (plasma doping) is promising for both evolutionary and revolutionary doping options because of its unique advantages which can overcome or minimize many of the issues of the beam-line (BL) based implants. In this talk, I present developments of PLAD on both planar and non-planar 3D device structures. Comparing with the conventional BL implants, PLAD shows not only a significant production enhancement, but also a significant device performance improvement and 3D structure doping capability, including an 80% contact resistance reduction, more than 25% drive current increase on planar devices, and 23% series resistance reduction, 25% drive current increase on non-planar 3D devices.","PeriodicalId":6548,"journal":{"name":"2014 20th International Conference on Ion Implantation Technology (IIT)","volume":"46 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 20th International Conference on Ion Implantation Technology (IIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIT.2014.6940017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
PLAD (plasma doping) is promising for both evolutionary and revolutionary doping options because of its unique advantages which can overcome or minimize many of the issues of the beam-line (BL) based implants. In this talk, I present developments of PLAD on both planar and non-planar 3D device structures. Comparing with the conventional BL implants, PLAD shows not only a significant production enhancement, but also a significant device performance improvement and 3D structure doping capability, including an 80% contact resistance reduction, more than 25% drive current increase on planar devices, and 23% series resistance reduction, 25% drive current increase on non-planar 3D devices.