A temperature drift compensation method applied to fiber optic gyroscope north-seeking

Q3 Engineering 光电工程 Pub Date : 2020-11-20 DOI:10.12086/OEE.2020.190681
L. Jinhui, Zhou Yilan, Liu Cheng, Shu Xiaowu
{"title":"A temperature drift compensation method applied to fiber optic gyroscope north-seeking","authors":"L. Jinhui, Zhou Yilan, Liu Cheng, Shu Xiaowu","doi":"10.12086/OEE.2020.190681","DOIUrl":null,"url":null,"abstract":"The startup error of fiber optic gyroscope (FOG) in north-seeking is the error caused by the zero-bias drift of FOG caused by drastic change of the temperature in the starting process. The start-up error significantly increases north-seeking error during the cold startup phase compared to the stable phase, which prolongs the effective north-seeking time. Through the analysis of the factors affecting the temperature drift of FOG, the mul-ti-parameter linear model was established by empirical mode decomposition (EMD), autoregressive-moving average (ARMA) modeling and Kalman filtering to realize a temperature drift compensation method applied to FOG north-seeking. The experimental results show that the method can reduce the north-seeking startup error by nearly 80%, so that the startup north-seeking precision is equivalent to the stable phase and the effective north-seeking time is shortened.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2020.190681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

The startup error of fiber optic gyroscope (FOG) in north-seeking is the error caused by the zero-bias drift of FOG caused by drastic change of the temperature in the starting process. The start-up error significantly increases north-seeking error during the cold startup phase compared to the stable phase, which prolongs the effective north-seeking time. Through the analysis of the factors affecting the temperature drift of FOG, the mul-ti-parameter linear model was established by empirical mode decomposition (EMD), autoregressive-moving average (ARMA) modeling and Kalman filtering to realize a temperature drift compensation method applied to FOG north-seeking. The experimental results show that the method can reduce the north-seeking startup error by nearly 80%, so that the startup north-seeking precision is equivalent to the stable phase and the effective north-seeking time is shortened.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于光纤陀螺寻北的温度漂移补偿方法
光纤陀螺寻北启动误差是光纤陀螺在启动过程中由于温度的剧烈变化引起的零偏漂移所产生的误差。与稳定阶段相比,冷启动阶段的启动误差显著增加寻北误差,延长了有效寻北时间。通过分析影响光纤陀螺温度漂移的因素,通过经验模态分解(EMD)、自回归移动平均(ARMA)建模和卡尔曼滤波建立多参数线性模型,实现光纤陀螺寻北温度漂移补偿方法。实验结果表明,该方法可将寻北启动误差降低近80%,使启动寻北精度与稳定相位相当,缩短了有效寻北时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
光电工程
光电工程 Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
0.00%
发文量
6622
期刊介绍:
期刊最新文献
The joint discriminative and generative learning for person re-identification of deep dual attention Fiber coupling technology of high brightness blue laser diode A few-shot learning based generative method for atmospheric polarization modelling Characteristics of wavefront correction using stacked liquid lens based on electrowetting-on-dielectric Research on joint coding for underwater single-photon video communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1