A Weighted Fuzzy Rough Nearest Neighbor Classification Algorithm Based on Multiple Interpolation and Similarity Attribute Analysis

Chao Xu, Daiwei Li, Haiqing Zhang, Wenfeng Hou, Tianrui Li
{"title":"A Weighted Fuzzy Rough Nearest Neighbor Classification Algorithm Based on Multiple Interpolation and Similarity Attribute Analysis","authors":"Chao Xu, Daiwei Li, Haiqing Zhang, Wenfeng Hou, Tianrui Li","doi":"10.1109/IICSPI.2018.8690500","DOIUrl":null,"url":null,"abstract":"Upper and lower approximation of fuzzy-rough set membership degree is used to solve uncertainty of classification problem in FRNN (Fuzzy Rough Nearest Neighbor) algorithm. Although FRNN is the current leading classification algorithm, misjudgments still tend to occur when handling similar attribute values. Combining multiple interpolation algorithms and similarity attribute analysis, this paper proposes a new classification algorithm, which is called weighted Fuzzy Rough Nearest Neighbor (WFRNN) classification algorithm. WFRNN adds the corresponding weight of each attribute for the sample, and then multiple interpolations are used to fill data sets and the other four kinds of packing method are adopted to fill the missing data set. Then five completely random missing data sets from UCI were used in comparison experiments. We have compared WFRNN with classic KNN, decision tree, FRNN, J48, and random forests. Experimental performances show that the WFRNN algorithm can predict more accuracy classification results.","PeriodicalId":6673,"journal":{"name":"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)","volume":"10 1","pages":"906-910"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICSPI.2018.8690500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Upper and lower approximation of fuzzy-rough set membership degree is used to solve uncertainty of classification problem in FRNN (Fuzzy Rough Nearest Neighbor) algorithm. Although FRNN is the current leading classification algorithm, misjudgments still tend to occur when handling similar attribute values. Combining multiple interpolation algorithms and similarity attribute analysis, this paper proposes a new classification algorithm, which is called weighted Fuzzy Rough Nearest Neighbor (WFRNN) classification algorithm. WFRNN adds the corresponding weight of each attribute for the sample, and then multiple interpolations are used to fill data sets and the other four kinds of packing method are adopted to fill the missing data set. Then five completely random missing data sets from UCI were used in comparison experiments. We have compared WFRNN with classic KNN, decision tree, FRNN, J48, and random forests. Experimental performances show that the WFRNN algorithm can predict more accuracy classification results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多次插值和相似属性分析的加权模糊粗糙近邻分类算法
采用模糊粗糙集隶属度的上下近似来解决模糊粗糙近邻算法中分类问题的不确定性。虽然FRNN是目前领先的分类算法,但在处理相似属性值时仍然容易出现误判。结合多种插值算法和相似属性分析,提出了一种新的分类算法,即加权模糊粗糙近邻(WFRNN)分类算法。WFRNN为样本添加每个属性对应的权值,然后使用多次插值填充数据集,另外四种填充方法填充缺失的数据集。然后利用UCI的5个完全随机缺失数据集进行对比实验。我们将WFRNN与经典的KNN、决策树、FRNN、J48和随机森林进行了比较。实验结果表明,WFRNN算法可以预测更准确的分类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Functional Safety Analysis and Design of Dual-Motor Hybrid Bus Clutch System Methods of Resource Allocation with Conflict Detection Exploration and Application of Sheet Metal Technology on Pit Package Repairing Study on Standardization of Electrolytic Trace Moisture Meter in Safety Construction of CNG Refueling Station The Research and Analysis of Big Data Application on Distribution Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1